Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оценка параметров моделей.





Для оценки параметров в моделях, нелинейных по оцениваемым параметрам, но приводимых к линейному виду, применяется МНК к преобразованным уравнениям. Если в линейной модели и моделях, нелинейных по переменным, при оценке параметров исходят из критерия , то в моделях, нелинейных по оцениваемым параметрам, требование МНК применяется не к исходным данным результативного признака, а к их преобразованным величинам, т. е. lny, 1/y.

Например, для оценки параметров степенной функции у=ахbE применяется МНК к линеаризованному уравнению lny=lna+blnx+lnE, т.е. решается система нормальных уравнений:

(Параметр b определяется непосредственно из системы, а параметр а - косвенным путем после потенцирования величины lna.)

Итак, оценка параметров основывается на минимизации суммы квадратов отклонений в логарифмах:

Соответственно если в линейных моделях (включая нелинейные по переменным) , то в моделях, нелинейных по оцениваемым параметрам,

Вследствие этого оценка параметров для линеаризуемых функций МНК оказываются несколько смещенной.

Проиллюстрируем это на примере экспоненциальной функции y=ea+bx..Прологарифмировав, имеем: lny=lna+xlnb. Применяя МНК, минимизируем . Система нормальных уравнений составит:

Из первого уравнения видно, что

Предположим, что фактические данные сложились так, что . Тогда , т е параметр а представляет собой среднюю геометрическую из значений переменной у. Между тем в линейной зависимости yxT=a+bx при параметр , т. е. средней арифметической. Поскольку средняя геометрическая всегда меньше средней арифметической, до и оценки параметров, полученные из минимизации , будут несколько смещены (занижены).

Практическое применение экспоненты возможно, если ре­зультативный признак не имеет отрицательных значений. Поэто­му если исследуется, например, финансовый результат деятель­ности предприятий, среди которых наряду с прибыльными есть и убыточные, то данная функция не может быть использована. Ес­ли экспонента строится как функция выравнивания по динами­ческому ряду для характеристики тенденции с постоянным тем­пом, то у = аbt, где у — уровни динамического ряда; t — хронологические даты, параметр b означает средний за период коэффициент роста. В уравнении у = еа+bх этот смысл приобретает величина антилогарифма параметра b.







Дата добавления: 2015-09-19; просмотров: 616. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия