Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расстояние между точками





Рассмотрим точки A 1 (x 1; y 1; z 1) и A 2 (x 2; y 2; z 2) и найдем расстояние между этими точками.

Теорема 9.7.

Расстояние между точками A 1 и A 2 можно вычислить по формуле

Определение 9.14.

Вектор, конец которого совпадает с данной точкой, называется радиус-вектором данной точки.

Рассмотрим некоторую точку M в пространстве с координатами (x; y; z). Пусть M 1, M 2, M 3 – точки пересечения с осями координат плоскостей, проходящих через точку M перпендикулярно к этим осям (чертеж 9.4.2). Тогда

По определению координаты точки M Значит, Совершенно аналогично Получается, что Тем самым доказана следующая

Теорема 9.8.

Координаты любой точки равны соответствующим координатам ее радиус-вектора.

Рассмотрим теперь две точки и По только что доказанному, Итак, каждая координата вектора равна разности соответствующих координат его конца и начала. Но длина вектора по определению равна длине отрезка а длина этого отрезка есть расстояние между точками и Значит,

Эта формула позволяет вычислять длину вектора, зная его координаты.

 

Рассмотрим два произвольных вектора: и

Определение 9.15.

Ненулевой вектор называется направляющим вектором прямой a, если он лежит либо на прямой a, либо на прямой, параллельной a.

Определение 9.16.

Углом между ненулевыми векторами называется угол между прямыми, для которых данные вектора являются направляющими. Угол между любым вектором и нулевым вектором по определению считаем равным нулю. Если угол между векторами равен 90°, то такие вектора называются перпендикулярными. Угол между векторами будем обозначать так:

Определение 9.17.

Скалярным произведением векторов и называется произведение их длин на косинус угла между ними:

Совершенно аналогично, как в планиметрии, доказываются следующие утверждения:

  • Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны.
  • Скалярный квадрат вектора, то есть скалярное произведение его самого на себя, равно квадрату его длины.
  • Скалярное произведение двух векторов и заданных своими координатами, может быть вычислено по формуле

Перечислим основные свойства скалярного произведения, которые также доказываются аналогично планиметрическим.

Для любых векторов и и любого числа λ справедливы равенства:

  1. причем
  2. (переместительный закон).
  3. (распределительный закон).
  4. (сочетательный закон).

 







Дата добавления: 2015-09-15; просмотров: 473. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия