Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение плоскости





· Рассмотрим произвольную точку в пространстве и некоторый вектор Очевидно, что геометрическим местом точек таких, что вектор перпендикулярен вектору будет плоскость, проходящая через точку M перпендикулярно прямой, для которой вектор является направляющим. Нашей задачей будет установить уравнение плоскости, то есть найти соотношение, которому удовлетворяют координаты точки A.

· Запишем условие перпендикулярности векторов с использованием скалярного произведения:

· Запишем последнее равенство в координатах:

· Поскольку все наши выкладки были равносильными, то это и есть уравнение плоскости, проходящей через заданную точку. Преобразуем его к виду

· Обозначая получим

· Это и есть так называемое общее уравнение плоскости.

· Определение 9.19.

· Вектор называется нормальным вектором (или просто нормалью) для плоскости, заданной общим уравнением (1).

· Нормальный вектор к плоскости перпендикулярен ей, что следует из самого вывода уравнения плоскости.

· Рассмотрим плоскость 3 x + 2 y + z – 6 = 0. Пусть A – точка пересечения этой плоскости с осью Ox, то есть A (2; 0; 0). Точка B (0; 3; 0) – это точка пересечения данной плоскости с осью Oy, точка C (0; 0; 6) – с осью Oz (чертеж 9.7.1). Уравнение называется уравнением плоскости в отрезках на осях.

· Эта плоскость пересекает оси Ox, Oy, Oz соответственно в точках A (a; 0; 0), B (0; b; 0), C (0; 0; c).

· Плоскость, изображенная на чертеже 9.7.1, имеет такое уравнение в отрезках на осях:

 







Дата добавления: 2015-09-15; просмотров: 361. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия