Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Частная и множественная корреляция





Частная и множественная корреляция обычно рассматриваются при изучении совокупности многомерных измерений. Рассмотрим её кратко на промере трёхмерного пространства.

Пусть имеем три переменные – x, y, z.

Частным коэффициентом корреляции между x и y при фиксированном значении z или, другими словами, при исключении влияния на них переменной z является величина, определяемая из выражения:

= .

Остальные частные коэффициенты корреляции определяются путём замены в приведённой формуле соответствующих индексов.

Частные коэффициенты корреляции можно рассчитать, рассматривая корреляцию не непосредственно между переменными, а между отклонениями, в которых влияние других переменных исключено.

Для трёх переменных это выглядит следующим образом. Пусть х и у корреляционно зависят от z. Выразим эту зависимость в виде: = f1(z), = f2(z). Рассмотрим разности ех = (x - ) и еу = (y - ). Ясно, что в них влияние переменной z исключено, поэтому коэффициент корреляции между остатками ех и еу будет отражать связь между исходными переменными х и у с исключением влияния переменной z. Таким образом = .

Частные коэффициенты корреляции обладают всеми свойствами парных коэффициентов корреляции. Они служат показателями чистой линейной корреляционной связи между переменными с исключением влияния учтённых переменных.

Частная корреляция очищает взаимосвязи между переменными от опосредованных зависимостей и помогает обнаружить величины, которые усиливают или ослабляют связи между конкретными переменными.

В развитие дальнейшего рассмотрения корреляции распространим понятие корреляционной связи на более чем две переменные. Тесноту линейной корреляционной связи между одной переменной и несколькими другими измеряют с помощью коэффициента множественного корреляции. Множественный коэффициент корреляции, например, между величиной z и двумя величинами x и y определяется по формуле

.

Такой коэффициент заключён между нулём и единицей и равен единице, когда связь между величинами z и (x,y) является линейной функциональной, и равен нулю, если линейная связь между z и (x,y) отсутствует. Другие множественные коэффициенты корреляции определяются путём замены соответствующих индексов в приведённой формуле.

Коэффициент множественный корреляции можно определить, рассчитав коэффициент корреляции между z и , где = f(x,y) –модельные значения z, вычисленные по уравнению регрессии от х и у. Таким образом = .

Понятия частного и множественного коэффициентов корреляции можно распространить на случай более 3 переменных. Вычисляются они на основе матрицы парных коэффициентов корреляции.

Так, коэффициент частной корреляции между переменными x i и x j при фиксированных значениях всех остальных рассматриваемых переменных X(i,j) рассчитывается из соотношения

ri,j.X(i,j) = –Ri,j / (RiiRjj)1/2,

а коэффициент множественной корреляции между переменной x i и всеми другими переменными X(i), т. е. коэффициент Ri.X(i) рассчитывается из соотношения

Ri. X (i) = .

Здесь Rkl – алгебраическое дополнение для элемента rkl в определителе корреляционной матрицы R анализируемых признаков, а det R – определитель этой матрицы.

При определении значимости частных коэффициентов корреляции пользуются теми же методами, что и для парных коэффициентов корреляции, уменьшая число степеней свободы на число исключаемых переменных, а для множественных коэффициентов корреляции используется F-статистика:

F = ,

где m – число анализируемых переменных.

При верности гипотезы о равенстве нулю коэффициента множественной корреляции F-статистика следует распределению Фишера с числом степеней свободы числителя, равным m, и знаменателя, равным n – m – 1.

Квадрат коэффициента множественной корреляции называется коэффициентом множественной детерминации. Коэффициент множественной детерминации показывает долю вариации одной переменной, обусловленную изменением других, включенных в анализ, переменных.

 







Дата добавления: 2015-09-15; просмотров: 747. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия