Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Показатели точности уравнения регрессии и оценок его параметров





При анализе уравнения регрессии сначала проверяется значимость уравнения регрессии в целом. Для решения этой задачи используется процедура дисперсионного анализа, основанная на разложении общей суммы квадратов отклонений зависимой переменной (SST – Sum. Squared total) на две составляющие: одна из которых – за счёт регрессионной зависимости (SSM – Sum. Squared model), другая – за счёт остаточного члена (SSR – Sum. Squared residual):

SST = SSM + SSR

или

Следует иметь в виду, что это соотношение верно, если в уравнении регрессии присутствует константа. Разделив суммы квадратов отклонений на соответствующие числа степеней свободы, получим суммы квадратов на одну степень свободы или средние квадраты, которые являются оценками дисперсии зависимой переменной y или остатков в условиях разных предпосылок. Одна из этих оценок (MSM = SSM/m) рассчитывается в предположении, что все коэффициенты в модели регрессии равны нулю (Ho: = =…= =0), а другая (MSR = SSR/(n–m–1)) – в предположении, что не все коэффициенты регрессии равны нулю. Затем эти оценки сравниваются по F-статистике (F = ), которая в случае выполнимости предпосылок МНК и верности нулевой гипотезы имеет распределение Фишера с числом степеней свободы числителя, равным m и знаменателя – (n – m – 1). Расчётное значение F-статистики сравнивается с критическим и если F , то нулевая гипотеза отклоняется, и уравнение регрессии признаётся значимым.

Вернёмся ещё раз к MSR. Этот показатель является одной из характеристик точности уравнения регрессии. Его называют остаточной дисперсией и обозначают S . Можно показать, что MSR является несмещённой оценкой дисперсии .

MSR также используется при вычислении других показателей точности уравнения регрессии. Например, корень квадратный из MSR называется стандартной ошибкой оценки по регрессии(Sy,x) и показывает, какую ошибку в среднем мы будем допускать, если значение зависимой переменной будем оценивать по найденному уравнению регрессии при известных значениях независимых переменных. Имеем

Sy,x =

Кроме того, этот показатель в неявном виде участвует в определении ещё одного показателя точности уравнения множественной регрессии, а именно – коэффициента множественной детерминации (Rsquared или R2). Как известно,

или после преобразований (в случае, если в уравнении регрессии присутствует константа)

Отсюда следует, что коэффициент множественной детерминации показывает долю вариации зависимой переменной, обусловленную вариацией включённых в уравнение регрессии независимых переменных, или, иными словами, долю вариации зависимой переменной, обусловленную регрессионной зависимостью.

Коэффициент множественной детерминации изменяется от нуля до единицы и равен единице, если SSR = 0, (связь линейная, функциональная), и равен нулю, если SST = SSR, (линейная связь отсутствует).

Из определения коэффициента множественной детерминации следует, что он будет увеличиваться при добавлении в уравнение регрессии независимых переменных, как бы слабо не были они связаны с независимой переменной. Следуя этой логике, в уравнение регрессии для увеличения точности отражения изучаемой зависимости может быть включено неоправданно много независимых переменных. Точность уравнения при этом может увеличиться незначительно, а размерность модели возрасти так, что её анализ будет затруднён. Кроме того, при этом уменьшается число степеней свободы модели и ухудшается точность оценок. Для преодоления этого недостатка был разработан исправленный (на число степеней свободы) коэффициент (Adjusted R-squared), имеющий вид

или после преобразования

.

В отличие от , будет убывать, если в уравнение регрессии будут добавляться незначимые независимые переменные (с t-статистикой < 1).

Исправленный коэффициент позволяет избежать переоценки независимой переменной при включении её в уравнение регрессии. Если добавление переменной приводит к увеличению , то включение её в уравнение регрессии оправданно, в противном случае – нет.

Продолжим анализ точности уравнения регрессии. Как уже отмечалось, при проверке значимости уравнения регрессии проверяется гипотеза о том, что все коэффициенты модели регрессии равны нулю. Если нулевая гипотеза отклоняется, то это означает, что не все коэффициенты в модели регрессии равны нулю, и тогда встаёт вопрос о проверке значимости каждого параметра регрессии в отдельности.

Такая проверка осуществляется на основе t-статистик, определяемых из соотношений

, k = 0,1,2,…,m,

где – выборочные стандартные ошибки соответствующих оценок.

Как известно,

= MSR [(XTX)-1] kk , (k = 0,1,…,m). (2.5)

Здесь [(XTX)-1]kk соответствующие диагональные элементы матрицы (XTX)-1 .

При компьютерных расчётах вместе с t-статистикой (t-Statistic) для каждой оценки параметров уравнения регрессии вычисляется выборочный уровень значимости или Prob – это вероятность того, что вычисленное значение t-статистики не превосходит критического значения. По его значению и определяется значимость каждой оценки параметров уравнения регрессии.

 







Дата добавления: 2015-09-15; просмотров: 726. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия