Свойства МНК-оценок
Остановимся более подробно на свойствах полученных оценок. Относительно уравнения множественной регрессии можно высказать те же предположения 1 – 4, что и для простой регрессии (заменив независимую переменную векторов независимых переменных), в том числе и предположения, лежащие в основе теоремы Гаусса-Маркова. Рассмотрим математическое ожидание полученных оценок. M(b) = M() = M() = + M( T ) = = + (XTX)M(XT ) = , т. к. M(XT ) = XTM() =0, если X и независимы. Здесь предполагается, что матрица Х детерминирована, а М() = 0. Таким образом, если регрессоры и остатки некоррелированны и математическое ожидание остатков равно нулю, то МНК-оценки являются несмещёнными. При доказательстве этого положения не использовались предположения 3 и 4 пункта 1.1, откуда следует, что МНК-оценки являются несмещённой до тех пор, пока регрессионные остатки имеют нулевое среднее и независимы от всех объясняющих переменных, даже если в них наблюдается гетероскедастичность и автокорреляция. Подсчитаем ковариационную матрицу полученных оценок. При этом будем иметь в виду, что ковариационная матрица остатков регрессии имеет вид , т. к. регрессионные остатки взаимно независимы и гомоскедастичны ( матрица размерности n n): Cov(b) = М{(b- )(b- )T} = M{(XTX)-1XT TX(XTX)-1} = (XTX)-1XT X(XTX)-1 = (XTX)-1, т. к. M( T) = . Итак, Cov(b) = (XTX)-1. На главной диагонали этой матрицы находятся дисперсии соответствующих оценок, т. е. D () = .
|