Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства МНК-оценок





Остановимся более подробно на свойствах полученных оценок. Относительно уравнения множественной регрессии можно высказать те же предположения 1 – 4, что и для простой регрессии (заменив независимую переменную векторов независимых переменных), в том числе и предположения, лежащие в основе теоремы Гаусса-Маркова.

Рассмотрим математическое ожидание полученных оценок.

M(b) = M() = M() = + M( T ) =

= + (XTX)M(XT ) = , т. к. M(XT ) = XTM() =0, если X и независимы.

Здесь предполагается, что матрица Х детерминирована, а М() = 0. Таким образом, если регрессоры и остатки некоррелированны и математическое ожидание остатков равно нулю, то МНК-оценки являются несмещёнными. При доказательстве этого положения не использовались предположения 3 и 4 пункта 1.1, откуда следует, что МНК-оценки являются несмещённой до тех пор, пока регрессионные остатки имеют нулевое среднее и независимы от всех объясняющих переменных, даже если в них наблюдается гетероскедастичность и автокорреляция.

Подсчитаем ковариационную матрицу полученных оценок. При этом будем иметь в виду, что ковариационная матрица остатков регрессии имеет вид , т. к. регрессионные остатки взаимно независимы и гомоскедастичны ( матрица размерности n n):

Cov(b) = М{(b- )(b- )T} = M{(XTX)-1XT TX(XTX)-1} = (XTX)-1XT X(XTX)-1 = (XTX)-1, т. к. M( T) = .

Итак, Cov(b) = (XTX)-1. На главной диагонали этой матрицы находятся дисперсии соответствующих оценок, т. е. D () = .

 







Дата добавления: 2015-09-15; просмотров: 535. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия