Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод наименьших квадратов и его предпосылки





Рассмотрим уравнение линейной множественной регрессии. Уравнение генеральной совокупности или модель регрессии запишем в виде

, (t = ), (2.1)

где – значения зависимой переменной с номером t;

– значения независимых переменных с номером t;

– параметры уравнения регрессии, – константа или свободный член уравнения регрессии, – коэффициенты уравнения регрессии;

– значения случайного члена уравнения регрессии.

Предполагается, что εt независимы и нормально распределены с нулевым математическим ожиданием и постоянной дисперсией , т. е. N(0, ).

Термины «зависимая» и «независимые» для переменных не совсем удачны и означают лишь, что в этом случае значения зависимой переменной оцениваются на основе известных значений независимых переменных.

Приведём предпосылки спецификации классической регрессионной модели:

эндогенная, зависимая переменная объясняется m экзогенными, независимыми переменными;

в общем случае уравнение регрессии включает константу;

объём выборки n должен быть значительно больше числа объясняющих переменных m (считается, что каждый регрессор должен быть обеспечен не менее 6–7 наблюдениями);

разность n–m–1 называется числом степеней свободы модели; чем она больше, тем надёжнее результаты оценивания;

параметры уравнения регрессии должны быть постоянными для всей выборки; это положение зачастую определяет выборку.

Кроме предпосылок спецификации модели необходимо выполнение ещё и предпосылок метода наименьших квадратов (МНК). Как известно, оценки параметров модели линейной регрессии обычно рассчитываются на основе МНК. Доказано, что эти оценки будут «хорошими», т.е. несмещёнными, эффективными и состоятельными, если будут выполняться следующие предпосылки относительно поведения остаточного члена :

математическое ожидание равно нулю для всех t, т.е. M() = 0; t;

дисперсия постоянна, т.е. D() = 0 t, в этом случае говорят, что в остатках наблюдается гомоскедастичность; в противном случае – гетероскедастичность;

случайные отклонения и независимы друг от друга для t s, в этом случае говорят, что в остатках отсутствует какая-либо автокорреляция;

регрессоры и остатки должны быть независимыми.

Кроме основных предпосылок, рассматриваются ещё две дополнительные – отсутствие между регрессорами сильной линейной зависимости (совершенной мультиколлинеарности) и что N (0, En). Последняя предпосылка не влияет на качество оценок и необходима для проверки статистических гипотез и построения интервальных оценок.

Одна из задач эконометрики – тестирование выполнимости предпосылок и выработка методов оценивания при их нарушениях.

Оцененное уравнение регрессии будем записывать так:

, (t = ). (2.2)

Здесь – оценки параметров уравнения регрессии, а – выборочная реализация случайного процесса .

Представим уравнение генеральной совокупности и оценённое уравнение регрессии в матричной форме. Введём следующие обозначения:

Y = , X = , b = , e = , и т. д.

Тогда уравнения регрессии (2.1) и (2.2) в матричной форме примут вид

Y = X + и Y = Xb + e. (2.3)

МНК-оценки параметров уравнения (2.1) рассчитываются из условия минимизации по b квадратичной формы:

Q(b) = e = (Y – Xb)T(Y – Xb) = YTY – 2YTXb – bTXTXb.

Продифференцируем Q(b) по b и приравняем результат к нулю:

= –2XTY – 2XTXb = 0.

Откуда имеем

b = . (2.4)

Это и есть МНК-оценка параметров уравнения (2.1).

Кроме того, известно, что несмещённая оценка дисперсии случайного члена равна

= = = ,

где – оценённые по уравнению (2.2) значения зависимой переменной.

 







Дата добавления: 2015-09-15; просмотров: 606. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия