Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод наименьших квадратов и его предпосылки





Рассмотрим уравнение линейной множественной регрессии. Уравнение генеральной совокупности или модель регрессии запишем в виде

, (t = ), (2.1)

где – значения зависимой переменной с номером t;

– значения независимых переменных с номером t;

– параметры уравнения регрессии, – константа или свободный член уравнения регрессии, – коэффициенты уравнения регрессии;

– значения случайного члена уравнения регрессии.

Предполагается, что εt независимы и нормально распределены с нулевым математическим ожиданием и постоянной дисперсией , т. е. N(0, ).

Термины «зависимая» и «независимые» для переменных не совсем удачны и означают лишь, что в этом случае значения зависимой переменной оцениваются на основе известных значений независимых переменных.

Приведём предпосылки спецификации классической регрессионной модели:

эндогенная, зависимая переменная объясняется m экзогенными, независимыми переменными;

в общем случае уравнение регрессии включает константу;

объём выборки n должен быть значительно больше числа объясняющих переменных m (считается, что каждый регрессор должен быть обеспечен не менее 6–7 наблюдениями);

разность n–m–1 называется числом степеней свободы модели; чем она больше, тем надёжнее результаты оценивания;

параметры уравнения регрессии должны быть постоянными для всей выборки; это положение зачастую определяет выборку.

Кроме предпосылок спецификации модели необходимо выполнение ещё и предпосылок метода наименьших квадратов (МНК). Как известно, оценки параметров модели линейной регрессии обычно рассчитываются на основе МНК. Доказано, что эти оценки будут «хорошими», т.е. несмещёнными, эффективными и состоятельными, если будут выполняться следующие предпосылки относительно поведения остаточного члена :

математическое ожидание равно нулю для всех t, т.е. M() = 0; t;

дисперсия постоянна, т.е. D() = 0 t, в этом случае говорят, что в остатках наблюдается гомоскедастичность; в противном случае – гетероскедастичность;

случайные отклонения и независимы друг от друга для t s, в этом случае говорят, что в остатках отсутствует какая-либо автокорреляция;

регрессоры и остатки должны быть независимыми.

Кроме основных предпосылок, рассматриваются ещё две дополнительные – отсутствие между регрессорами сильной линейной зависимости (совершенной мультиколлинеарности) и что N (0, En). Последняя предпосылка не влияет на качество оценок и необходима для проверки статистических гипотез и построения интервальных оценок.

Одна из задач эконометрики – тестирование выполнимости предпосылок и выработка методов оценивания при их нарушениях.

Оцененное уравнение регрессии будем записывать так:

, (t = ). (2.2)

Здесь – оценки параметров уравнения регрессии, а – выборочная реализация случайного процесса .

Представим уравнение генеральной совокупности и оценённое уравнение регрессии в матричной форме. Введём следующие обозначения:

Y = , X = , b = , e = , и т. д.

Тогда уравнения регрессии (2.1) и (2.2) в матричной форме примут вид

Y = X + и Y = Xb + e. (2.3)

МНК-оценки параметров уравнения (2.1) рассчитываются из условия минимизации по b квадратичной формы:

Q(b) = e = (Y – Xb)T(Y – Xb) = YTY – 2YTXb – bTXTXb.

Продифференцируем Q(b) по b и приравняем результат к нулю:

= –2XTY – 2XTXb = 0.

Откуда имеем

b = . (2.4)

Это и есть МНК-оценка параметров уравнения (2.1).

Кроме того, известно, что несмещённая оценка дисперсии случайного члена равна

= = = ,

где – оценённые по уравнению (2.2) значения зависимой переменной.

 







Дата добавления: 2015-09-15; просмотров: 606. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия