Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод наименьших квадратов и его предпосылки





Рассмотрим уравнение линейной множественной регрессии. Уравнение генеральной совокупности или модель регрессии запишем в виде

, (t = ), (2.1)

где – значения зависимой переменной с номером t;

– значения независимых переменных с номером t;

– параметры уравнения регрессии, – константа или свободный член уравнения регрессии, – коэффициенты уравнения регрессии;

– значения случайного члена уравнения регрессии.

Предполагается, что εt независимы и нормально распределены с нулевым математическим ожиданием и постоянной дисперсией , т. е. N(0, ).

Термины «зависимая» и «независимые» для переменных не совсем удачны и означают лишь, что в этом случае значения зависимой переменной оцениваются на основе известных значений независимых переменных.

Приведём предпосылки спецификации классической регрессионной модели:

эндогенная, зависимая переменная объясняется m экзогенными, независимыми переменными;

в общем случае уравнение регрессии включает константу;

объём выборки n должен быть значительно больше числа объясняющих переменных m (считается, что каждый регрессор должен быть обеспечен не менее 6–7 наблюдениями);

разность n–m–1 называется числом степеней свободы модели; чем она больше, тем надёжнее результаты оценивания;

параметры уравнения регрессии должны быть постоянными для всей выборки; это положение зачастую определяет выборку.

Кроме предпосылок спецификации модели необходимо выполнение ещё и предпосылок метода наименьших квадратов (МНК). Как известно, оценки параметров модели линейной регрессии обычно рассчитываются на основе МНК. Доказано, что эти оценки будут «хорошими», т.е. несмещёнными, эффективными и состоятельными, если будут выполняться следующие предпосылки относительно поведения остаточного члена :

математическое ожидание равно нулю для всех t, т.е. M() = 0; t;

дисперсия постоянна, т.е. D() = 0 t, в этом случае говорят, что в остатках наблюдается гомоскедастичность; в противном случае – гетероскедастичность;

случайные отклонения и независимы друг от друга для t s, в этом случае говорят, что в остатках отсутствует какая-либо автокорреляция;

регрессоры и остатки должны быть независимыми.

Кроме основных предпосылок, рассматриваются ещё две дополнительные – отсутствие между регрессорами сильной линейной зависимости (совершенной мультиколлинеарности) и что N (0, En). Последняя предпосылка не влияет на качество оценок и необходима для проверки статистических гипотез и построения интервальных оценок.

Одна из задач эконометрики – тестирование выполнимости предпосылок и выработка методов оценивания при их нарушениях.

Оцененное уравнение регрессии будем записывать так:

, (t = ). (2.2)

Здесь – оценки параметров уравнения регрессии, а – выборочная реализация случайного процесса .

Представим уравнение генеральной совокупности и оценённое уравнение регрессии в матричной форме. Введём следующие обозначения:

Y = , X = , b = , e = , и т. д.

Тогда уравнения регрессии (2.1) и (2.2) в матричной форме примут вид

Y = X + и Y = Xb + e. (2.3)

МНК-оценки параметров уравнения (2.1) рассчитываются из условия минимизации по b квадратичной формы:

Q(b) = e = (Y – Xb)T(Y – Xb) = YTY – 2YTXb – bTXTXb.

Продифференцируем Q(b) по b и приравняем результат к нулю:

= –2XTY – 2XTXb = 0.

Откуда имеем

b = . (2.4)

Это и есть МНК-оценка параметров уравнения (2.1).

Кроме того, известно, что несмещённая оценка дисперсии случайного члена равна

= = = ,

где – оценённые по уравнению (2.2) значения зависимой переменной.

 







Дата добавления: 2015-09-15; просмотров: 606. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия