Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тестирование остатков на нормальный закон распределения





Тестов на нормальный закон распределения разработано достаточно много. У каждого из них есть свои преимущества и недостатки. Остановимся здесь на одном из них, реализованном в эконометрическом пакете EViews. Этот тест носит название своих авторов (Jarque – Bera test).

Статистика Jarque – Bera (JB) (Харке – Бера) предназначена для проверки нулевой гипотезы о нормальном законе распределения для значений рассматриваемой переменной. Статистика (JB) в EViews рассчитывается из соотношения

JB = (nk)

где S – асимметрия; К – эксцесс; n – объём выборки; k – число оцениваемых параметров в регрессии. Известно, что для нормального закона распределения S = 0, К = 3, тогда и JB = 0. JB-статистика в предположении верности нулевой гипотезы имеет хи-квадрат распределение с двумя степенями свободы ( (2)). И если расчётное значение статистики JB окажется больше критического значения статистики хи–квадрат при фиксированном уровне значимости , то гипотеза о нормальном законе распределения отклоняется (при этом Probability для JB будет меньше ).

Отметим ещё раз, что критерии Дарбина – Уотсона и Голдфелда – Квандта являются точными (неасимптотическими) в том смысле, что они непосредственно учитывают количество наблюдений в выборке. В противоположность этому критерии Харке – Бера, Бройша – Годфри и Уайта являются асимптотическими и хорошо приближаются распределением хи-квадрат только при большом объёме наблюдений. Поэтому вполне полагаться на результаты применения последних можно только при больших объёмах выборки..

 







Дата добавления: 2015-09-15; просмотров: 3067. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия