Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

По графу состояний





 

Вероятность нахождения восстанавливаемой системы в i- м состоянии в момент времени t может быть определена как отношение:

Pi (z) = Δ i (z) / Δ(z), (5.6)

где Δ(z) – главный определитель системы дифференциальных уравнений, записанной в преобразовании Лапласа; Δ i (z) – частный определитель системы.

Определители записывают в виде полиномов, в которых коэффициенты при переменной зависят от графа состояний и интенсивностей переходов. Степень полинома главного определителя системы равна числу узлов графа состояний, а частного определителя зависит от номера текущего состояния и начального состояния системы.

Финальная вероятность нахождения системы в i- м состоянии определяется соотношением

, (5.7)

где An- 1, Bmi – свободные члены полиномов главного и частного определителей системы.

Вероятность попадания системы в i- е состояние в течение времени t аналогична формуле (5.6), но коэффициенты полинома главного определителя теперь уже зависят от начального и i- го состояний, а финальная вероятность равна единице (за время, стремящееся к бесконечности (t→;∞; z→;0), система обязательно попадет в i- е состояние).

Рассмотрим последовательность определения вероятностей нахождения в каждом из состояний на примере простой системы с восстановлением отказавших элементов (рис. 5.3). Граф состояний показан на рис. 5.4.

Неработоспособные состояния показаны на рис. 5.4 затемненными кружками: 100, 001, 110 и 010. Эти состояния являются для данной системы конечными. Переходы из состояния в состояние приведены в табл. 5.2.

 

Таблица 5.2

Таблица переходов состояний системы по рис. 5.3

Состояния (вершины графа по рис. 6.4) Интенсивность переходов из данного состояния в другие Реализуемые состояния системы Суммарная интенсивность выхода из состояния
111 (0) а 01 = а 02 = а 06 = λ 111 (0) – исходное состояние, отказов нет а 01 + а 02 = 3λ
101 (1) а 10 = μ, а 14 = а 13 = λ
011 (2) а 20 = μ, а 23 = а 27 = λ 101, 011 (1) – отказ одного из двух дублированных элементов 1 или 2 а 10 + а 13 = 2λ + μ
001 (3) а 01 = λ
100 (4) а 41 = μ 110 (2) – отказ недублированного элемента 3 а 20 = μ
001 (5) а 51 = μ
110 (6) а 60 = μ 001 (3) – отказ одного из оставшихся дублированных элементов 1 или 2 а 31 = 2μ
010 (7) а 72 = μ

Приведенный на рис. 5.4 граф несколько формален, так как не учитывает ограничений, связанных с особенностями функционирования конкретной системы. В то же время, свойства системы, отражающие особенности ее функционирования (прерывания, переключения, аварийные отключения, ремонты и пр.), степень резервирования и возможности восстановления отказавших элементов, а также система обслуживания при эксплуатации (схема, алгоритм, приоритеты, ресурсы) влияют на число реализуемых на практике (реалистичных) переходных и конечных состояний.

Если учесть конкретные особенности функционирования системы на рис. 5.3 (система обслуживается двумя бригадами (возможно одновременное восстановление двух отказавших элементов), и в ней не рассматриваются переходы через состояния, приводящие к отказам элемента без дублирования (элемент 3)), то в этом случае граф состояний системы упрощается, а число рассматриваемых состояний уменьшается до четырех (см. табл. 5.2).

Для вычисления вероятностей нахождения системы в любом из состояний в конкретный момент времени (соотношение (5.6)) необходимо найти ее главный и частные определители. В рассматриваемом примере главный определитель системы в преобразовании Лапласа может быть представлен в виде полинома третьей степени Δ(s) = s (A 0 s 3 + A 1 s 2 + A 2 s + A 3).

Частный определитель также представляется в виде полинома, степень которого находится из выражения mi = n – 1 – li, где n – число состояний системы, li – число переходов в i -е состояние из начального по кратчайшему пути. В общем виде частный определитель Δ i (s) = B 0 i smi + B 1 i smi- 1 +... + Bmi).

Коэффициенты полиномов определяют из интенсивностей переходов по правилам, которые мы здесь не рассматриваем (см. [7]). Опуская вычисления, приведем соотношения определителей анализируемой в примере системы:

Δ(s) = s [ s 3 + (5λ + 4μ) s 2 + (6λ2 + 11λμ +2) s + (2μ3 + 6λμ2 ++4λ2μ);

Δ0(s) = s 3 + (2λ + 4μ)s2 + (2λμ + 5μ2)s + 2μ3;

Δ1(s) =s 2 + 6λμ s + 4λμ2;

Δ2(s) = λ s 2 + (2λ2 + 3λμ) s + 2λμ2;

Δ3(s) =2 s +2μ.

Искомые вероятности находят как отношения соответствующих определителей к главному определителю системы.

 







Дата добавления: 2015-08-31; просмотров: 881. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия