Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лекция №6





Тема: Производная и дифференциал функции Производные основных элементарных функций.

План:

  1. Производная и дифференциал функции одной переменной: их геометрический и механический смысл.
  2. Производные сложной, обратной функции и функции заданной в неявном виде.
  3. Производная функции заданной параметрической.
  4. Производные основных элементарных функций.
  5. Производные и дифференциалы высших порядков.
  6. Формула Лейбница для n-ой производной
  7. Логарифмическое дифференцирование.

 

Ключевые слова: производная функции, дифференциал, приращение функции, формула Лейбница.

Производной функции называется предел отношения приращения функции к приращению независимой переменной при стремлении последнего к нулю (если этот предел существует)

.

Если функция в точке имеет конечную производную, то функция называется дифференцируемой в этой точке.

Функция дифференцируемая в каждой точке промежутка , называется дифференцируемой на этом промежутке.

Геометрический смысл производной: производная есть угловой коэффициент (тангенс угла наклона) касательной, приведенной к кривой в точке .

Тогда уравнение касательной к кривой в точке примет вид

.

Механический смысл производной: производная пути по времени есть скорость точки в момент времени :

Теорема. Если функция дифференцируема в точке , то она в этой точке непрерывна.

Производная функции может быть найдена по следующей схеме

1.Дадим аргументу приращение и найдем наращенное значение функции .

2.Находим приращение функции .

3.Составляем отношение .

4.Находим предел этого отношения при , то есть (если этот предел существует).

Правила дифференцирования

1. Производная постоянной равна нулю, то есть .

2. Производная аргумента равна 1, то есть .

3. Производная алгебраической суммы конечного числа дифференцируемых функций равна такой же сумме производных этих функций, то есть

4. Производная произведения двух дифференцируемых функций равна произведению производной первого сомножителя на второй плюс произведение первого сомножителя на производную второго, то есть

5. Производная частного двух дифференцируемых функций может быть найдена по формуле:

.

Теорема. Если и - дифференцируемые функции от своих переменных, то производная сложной функции существует и равна производной данной функции по промежуточному аргументу и умноженной на производную самого промежуточного аргумента по независимой переменной , то есть

.

Теорема. Для дифференцируемой функции с производной не равной нулю, производная обратной функции равна обратной величине производной данной функции, то есть .

Таблица производных

 







Дата добавления: 2015-09-18; просмотров: 430. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия