Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лекция №7





Тема Неопределенный интеграл.

План:

1. Понятие первообразной функции.

2. Неопределенный интеграл.

3. Основные свойства неопределенного интеграла.

4. Интегрирование заменой переменой.

5. Интегрирование по частям

 

 

Ключевые слова: первообразная функции, интегрирование, замена переменной и интегрирование по частям.

 

Функция называется первообразной для функции на промежутке , если в любой точке этого промежутка .

Теорема. Если и - первообразные для функции на некотором промежутке , то найдется такое число , что будет справедливо равенство

= + .

Множество всех первообразных для функции на промежутке называется неопределенным интегралом от функции и обозначается . Таким образом, = + .

Свойства неопределенного интеграла

1.Производная от неопределенного интеграла равна подынтегральной функции, то есть

.

2.Дифференциал неопределенного интеграла равен подынтегральному выражению, то есть

3.Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого, то есть

,

где - произвольное число.

4.Постоянный множитель можно выносить за знак интеграла, то есть

5.Интеграл от алгебраической суммы двух функций равен такой же сумме интегралов от этих функций, то есть

.

Метод замены переменной

,

где - функция, дифференцируемая на рассматриваемом промежутке.

 

Метод интегрирования по частям

,

где и - дифференцируемые функции.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.







Дата добавления: 2015-09-18; просмотров: 430. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия