Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лекция №7





Тема Неопределенный интеграл.

План:

1. Понятие первообразной функции.

2. Неопределенный интеграл.

3. Основные свойства неопределенного интеграла.

4. Интегрирование заменой переменой.

5. Интегрирование по частям

 

 

Ключевые слова: первообразная функции, интегрирование, замена переменной и интегрирование по частям.

 

Функция называется первообразной для функции на промежутке , если в любой точке этого промежутка .

Теорема. Если и - первообразные для функции на некотором промежутке , то найдется такое число , что будет справедливо равенство

= + .

Множество всех первообразных для функции на промежутке называется неопределенным интегралом от функции и обозначается . Таким образом, = + .

Свойства неопределенного интеграла

1.Производная от неопределенного интеграла равна подынтегральной функции, то есть

.

2.Дифференциал неопределенного интеграла равен подынтегральному выражению, то есть

3.Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого, то есть

,

где - произвольное число.

4.Постоянный множитель можно выносить за знак интеграла, то есть

5.Интеграл от алгебраической суммы двух функций равен такой же сумме интегралов от этих функций, то есть

.

Метод замены переменной

,

где - функция, дифференцируемая на рассматриваемом промежутке.

 

Метод интегрирования по частям

,

где и - дифференцируемые функции.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.







Дата добавления: 2015-09-18; просмотров: 430. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия