Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Классический способ подсчета вероятностей





Пусть W - конечное пространство элементарных событий А1, А2, …, Аn. В качестве борелевского поля событий рассмотрим систему S всех подмножеств множества W.

Ясно, что при этом аксиомы I и II выполняются. При классическом способе подсчета вероятностей все элементарные события считаются равновероятными. И так как р(А1 + А2 +… + Аn) = р(U) = 1, то р(А1) = р(А2) = … = р(Аn) = .

Если теперь А – произвольное событие и А = Ai1 + …+ Aim, то согласно аксиоме 2 имеем р(А) = .

События А1, А2, …, Аn принято называть элементарными исходами данного испытания, а те элементарные исходы, которые в сумме составляют событие А, называются благоприятными случаями для А. Количество благоприятных случаев для события А обозначим m(A). Таким образом, р(А) = , т.е. вероятность события А равна отношению числа благоприятных случаев для А к общему числу элементарных исходов испытания.

Пример 1. В урне 10 шаров, из которых 3 белых и 7 черных. Какова вероятность того, что наудачу извлеченный шар из этой урны окажется белым?

Решение. Пусть событие А – извлеченный шар оказывается белым. Данное испытание имеет 10 равновероятных исходов, из которых для события А благоприятны три. Следовательно, р(А) = .

Пример 2. Все натуральные числа от 1 до 20 записаны на одинаковых карточках и помещены в урну. После тщательного перемешивания карточек из урны наудачу взята одна карточка. Какова вероятность того, что число на взятой карточке окажется кратным 5 – событие А; кратным 3 – событие В; простым – событие С; составным – событие D; не простым и не составным – событие Е?

Решение. Испытание имеет 20 равновероятных исходов. Из них m(A) = 4; m(B) = 6; m(C) = 8; m(D) = 11; m(E) = 1.

Соответственно событиям получим следующие вероятности:

p(A) = 0,2; p(B) = 0,3; p(C) = 0,4; p(D) = 0,55; p(E) = 0,05.

 

Пусть событие А может наступить только с одним из n попарно несовместных событий Н1, Н2, …, Нn, которые по отношению к А называются гипотезами. Тогда вероятность события А можно вычислить по формуле полной вероятности:

.

Если стало известно, что событие А произошло, то вероятность р (Hi)(i = 1,2,…,n)можно переоценить, т.е. найти условные вероятности p (Hi / A).

Эта задача решается по формуле Байеса:

, (12)

где р (А) вычисляется по формуле полной вероятности.

Пример. В первой урне 2 белых и 6 черных шаров, во второй – 4 белых и 2 черных. Из первой урны наудачу переложили 2 шара во вторую, после чего из второй урны наудачу достали один шар.

а) Какова вероятность того, что этот шар белый?

б) Шар, взятый из второй урны, оказался белым. Какова вероятность того, что из первой урны во вторую были переложены 2 белых шара?

Решение. а) Введем обозначения: А – шар, извлеченный из второй урны, белый; гипотезы Н1 – из первой урны во вторую переложены 2 белых шара, Н2 – переложены 2 разноцветных шара, Н3 – переложены 2 черных шара. Тогда

р(Н) = р(Нi) p(A/Hi) + p(H2) p(A/H2) + p(H3) p (A/H3).

Вероятности гипотез Нi и условие вероятности p(A/ Нi) (i = 1, 2, 3) вычисляем по классической схеме:

, , ;

, , .

Полученные результаты подставим в формулу (1):

.

б) Вероятность р(Н1/А) находим по формуле Байеса:

.

 







Дата добавления: 2015-09-18; просмотров: 991. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия