Студопедия — Тема: Законы распределение случайных величин. Биноминальный закон распределения. Закон распределения Пуассона. Числовые характеристики.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема: Законы распределение случайных величин. Биноминальный закон распределения. Закон распределения Пуассона. Числовые характеристики.






Реальное содержание понятия «случайная величина» может быть выражено с помощью такого определения: случайной величиной, связанной с данным опытом, называется величина, которая при каждом осуществлении этого опыта принимает то или иное числовое значение, причем заранее неизвестно, какое именно. Случайные величины будем обозначать жирными буквами х, у,….

Определение. Говорят, что задана дискретная случайная величина х, если указано конечное или счетное множество чисел

х1, х2

и каждому из этих чисел xi поставлено в соответствие некоторое положительное число pi, причем

р1 + р2 + …= 1.

Числа х1, х2 … называются возможными значениями случайной величины х, а числа р1, р2 ,… - вероятностями этих значений (pi = Р ( х = xi)).

Таблица

xi x1 x2
pi p1 p2

 

называется законом распределения дискретной случайной величины х.

Для наглядности закон распределения дискретной случайной величины изображают графически, для чего в прямоугольной системе координат строят точки (xi, pi) и соединяют последовательно отрезками прямых. Получающаяся при этом ломаная линия называется многоугольником распределения случайной величины х.


Пример 1. По мишени производится 4 независимых выстрела с вероятностью попадания при каждом выстреле р = 0,8. Требуется: а) найти закон распределения дискретной случайной величины х, равной числу попаданий в мишень; б) найти вероятности событий: 1 £ х £ 3; х > 3; в) построить многоугольник распределения.

Решение. а) Возможные значения случайной величины х: 0, 1, 2, 3, 4. Соответствующие вероятности вычисляем по формуле Бернулли:

Закон распределения х представится таблицей:

xi          
pi 0,0016 0,0256 0,1536 0,4096 0,4096

Проверка: 0,0016 + 0,0256 + 0,1536 + 0,4096 + 0,4096 = 1.

б) Вероятность событий 1 £ х £ 3 и х > 3 равны:

р (1 £ х £ 3) = р ({1,2,3}) = р1 + р2 + р3 = 0,0256 + 0,1536 + 0,4096 = 0,5888;

р(х > 3) = р ({4}) = р4 = 0,4096.

в) Многоугольник распределения представлен на рисунке 11.

Если возможными значениями дискретной случайной величины х являются 0, 1, 2, …, n, а соответствующие им вероятности вычисляются по формуле Бернулли:

, k = 0,1,…n; q = 1- p,

то говорят, что случайная величина х имеет биномиальный закон распределения:

 

xi     n
pi pn(0) pn(1) pn(n)

Рассмотренная выше в примере 1 случайная величина х имеет биномиальный закон распределения, в котором n = 4, p = 0,8.

Пример 2. В урне 7 шаров, из которых 4 белых, а остальные черные. Из этой урны наудачу извлекаются 3 шара; х – число извлеченных белых шаров. Найдите закон распределения дискретной случайной величины х и вероятность события х ³ 2.

Решение. Возможные значения случайной величины х: 0, 1, 2, 3. Соответствующие им вероятности р0, р1, р2, р3 подсчитываем классическим способом:

; ;

;

Закон распределения х:

xi        
pi

Вероятность события х ³ 2 равна:

р (х ³ 2) = + = .

Пусть заданы натуральные числа m, n, s, причем m£ s £ n. Если возможными значениями дискретной случайной величины х являются 0,1,2,…, m, а соответствующие им вероятности выражаются по формуле

pk = p( x = k) = , k = 0,1,…,m,

то говорят, что случайная величина х имеет гипергеометрический закон распределения.

Случайная величина х из примера 2 имеет гипергеометрический закон распределения с n =7, s = 3, m = 4.

Другими часто встречающимися примерами законов распределения дискретной случайной величины являются:

геометрический

 

xi       k
pi p1 p2 p3 pk

 

где pk = qk-1p, q = 1 – p (0 < p < 1);

Закон распределения Пуассона:

 

xi         k
pi p0 p1 p2 p3 pk

, l - положительное постоянное.

Закон распределения Пуассона является предельным для биномиального при n ® ¥, p ® 0, np = l = const. Виду этого обстоятельства при больших n и малых p биномиальные вероятности вычисляются приближенно по формуле Пуассона:

, где l = np.

 







Дата добавления: 2015-09-18; просмотров: 563. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2024 год . (0.032 сек.) русская версия | украинская версия