Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема: Элементы корреляционно-регрессионного анализа. Дисперсионный анализ. Метод наименьших квадратов.





При изучении связи между случайными величинами х и у важную роль играет коэффициент корреляции r [ x, y ], определяемый формулой

.

Учитывая, что k[x, y] = M[x y] – M[x] M[y] (см. § 18), можно записать:

, (1)

Свойства коэффициента корреляции:

1. Если х и у независимы, то r [ x, y ] = 0.

2. Для любых х и у имеет место неравенство ½ r [ x, y ] ½ £ 1.

3. ½ r [ x, y ] ½ = 1 тогда и только тогда, когда между х и у имеется линейная зависимость у = ах + b; причем r [ x, y ] = 1, если a > 0 и r [ x, y ] = -1, если a < 0 (и наоборот).

 

Система случайных величин (х, у) задана таблицей распределения:

у х -1    
  0,10 0,15 0,20
  0,15 0,25 0,15

Найдите коэффициент корреляции между х и у.

Решение. Воспользуемся формулой (1):

.

В данном случае

M[xy] = 0 × (-1) × 0,10 + 0 × 0 × 0,15 + 0 ×1 × 0,20 + 1 × (-1) × 0,15 + 1 × 0 × 0,25 + + 1 × 1 × 0,15 = 0.

Для нахождения M[x], M[y], s [x] и s [x] составим законы распределения величин х и у в отдельности:

    - закон распределения х;
0,45 0,55

 

-1     - закон распределения у;
0,25 0,40 0,35

 

Отсюда

M[x] = 0 × 0,45 + 1× 0,55 = 0,55;

M[y] = (-1) × 0,25 + 0 × 0,040 + 1 × 0,25 = 0,1;

D[x] = M[x2] – M[x]2 = 0,55 – 0,552 = 0,2475;

s [x] = » 0,497;

D[y] = M[y2] – M[y]2 = 0,6 – 0,12 = 0,59;

s [y] = » 0,768;

.

Пример 2. Известно, что M[x] = 5; M[y] = 0,2; D[x] = 4; D[y] = 2,25; r [x,y] = -0,5. Найдите M[xy].

Решение. Из формулы (1) находим:

M[xy] = M[x] M[y] + s[x] s[y] r[x,y] = 5 × 0,2 × × (-0,5) = -1,5.

 

Пусть коэффициент корреляции между величинами х и у неизвестен, но мы располагаем n точками:

1, у1), (х2 у2),..., (xn yn), (2)

полученными в результате n независимых опытов над системой (х, у). Тогда в качестве приближенного значения неизвестного r[ x,y ] берется выборочный коэффициент корреляции:

.

Пример 3. В результате 10 независимых опытов над системой (х,у) получены точки: (2,1; 3,0), (2,1; 2,8), (2,0; 3,0), (2,5; 2,0), (2,8; 1,8), (2,2; 2,5), (3,2; 1,5), (3,2; 1,1), (3,2; 1,0), (4,7; 1,3). Найдите выборочный коэффициент корреляции.

Решение. Для удобства вычислений составляем расчетную таблицу:

 

№ опыта xk yk xk yk
  2,1 3,0 6,30 4,41 9,00
  2,1 2,8 5,88 4,41 7,84
  2,0 3,0 6,0 4,00 9,00
  2,5 2,0 5,0 6,25 4,00
  2,8 1,8 5,04 7,84 3,24
  2,2 2,5 5,50 4,84 6,25
  3,2 1,5 4,80 10,24 2,25
  3,2 1,1 3,52 10,24 1,21
  3,2 1,0 3,20 10,24 1,00
  4,7 1,3 6,11 22,09 1,69
Сумма     51б35 84,56 45,48

 

Далее находим:

; ; ;

; ;

; ;

.

Так как модуль коэффициента корреляции близок к 1, то зависимость между х и у можно считать близкой к линейной, причем корреляция отрицательная (с возрастанием х величина у в среднем убывает).

Пусть зависимость у от х близка к линейной и имеется выборка (2). Требуется найти прямую у = ах + b, которая наилучшим образом выражает зависимость у от х. Эта задача решается методом наименьших квадратов (см. [6], § 46). Искомое уравнение имеет вид:

. (3)

Уравнение (3) называется выборочным уравнением регрессии у на х. Аналогично определяется выборочное уравнение регрессии х на у:

.








Дата добавления: 2015-09-18; просмотров: 832. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия