Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Статистики





Мы можем вычислить средние, медианы, дисперсии и процентили по данным, собранным из совокупности. Значения различных описательных мер, вычисленных для генеральных совокупностей, называются параметрами. Для выборок те же описательные меры называются статистиками. Параметр описывает совокупность так же, как статистика – выборку. Принято обозначать статистики латинскими буквами, а параметры – греческими. Символ X принят для выборочного среднего, а греческая буква М обозначает генеральное среднее. Выборочная дисперсия обозна-чается D или , а генеральная σ2.

Статистику, вычисленную по выборке, можно рассматривать как оценку параметра совокупности. Оцениватель – некоторая функция от значений в выборке, дающая величину, называемую оценкой; оценка же дает некоторую информацию о параметре. Например, выборочное среднее X – оцениватель среднего или среднего значения совокупности.

Меры центральной тенденции

К мерам центральной тенденции (или мерам положения) относятся: мода, медиана и средние величины. Мер положения много, но каждая из них преимущественно используется только в определенных условиях.

 

 

Мода

 

Мода – такое значение в множестве наблюдений, которое встречается наиболее часто.

Пример: 2, 6, 6, 9, 9, 9, 10.

Мо = 9.

Мода (Мо) – это мера положения, определяемая как значение варианты, наиболее часто встречающееся в выборке. Варианта – это переменная, представляющая собой результаты измерений, которые варьируются, т.е. изменяются. Мода, уже известная нам по системам классифицированных и упорядоченных событий, – это значение случайной величины, имеющее наибольшую вероятность появления. Мода служит един­ственно возможной мерой положения для существенно дискретной случайной величины.

Соглашение об использовании моды:

1. В том случае, когда все значения в группе встречаются одинаково часто, принято считать, что группа оценок не имеет моды.

Пример: 0,5; 0,5; 1,6; 1,6; 2,9; 2,9.

Моды нет. Мо = 0.

2. Когда два соседних значения имеют одинаковую частоту, и они больше частоты любого другого значения, мода есть среднее этих двух значений.

Пример: 1, 1, 2, 2, 2, 3, 3, 3, 4.

Мо = 2,5.

3. Если два несмежных значения в группе имеют равные частоты и они больше частоты любого другого значения, то имеем две моды. Говорят: группа оценок является бимодальной.

Пример: 10, 11, 11, 11, 12, 13, 14, 14, 14, 15.

Мо = 11 и 14.

Для непрерывных случайных величин, имеющих “выпуклую” функцию распределения, мода определяется из усло­вия максимума функции.

Для квантованных непрерывных случайных величин с “выпу­клой” гистограммой за моду приближенно принимается среднее значение классового интервала. Необходимо отметить, что среди распределений встречаются унимодальные, у которых мода отсутствует (рис. 6, а), и полимодальные, у которых две и более мод (рис. 6, б).

а б

Рис. 6. Унимодальные распределения (а, кривые 1, 2, 3
характеризуют разные типы таких распределений) и полимодальное распределение (б)
(по оси абсцисс – значения непрерывной случайной величины, по оси ординат –
плотности вероятностей)







Дата добавления: 2015-09-18; просмотров: 696. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия