Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Среднее значение





 

Наиболее важной статистикой, получаемой из набора количественных данных, является средняя,или мера расположения центра данных. В математической статистике есть довольно много видов средних величин: среднее гармоническое, среднее арифметическое, среднее квадра-тическое, среднее кубическое, среднее геометрическое и так далее. Все типы средних значений всегда не меньше минимального наблюдаемого значения и не больше максимального наблюда-емого значения. В этой связи необходимо специально остановиться на понятии “среднее значение” (или математическое ожидание). В теории вероятностей и математической статистике это понятие многозначно. С одной стороны, это понятие обозначает меру положения. В та­ком смысле оно и употреблялось выше. С другой стороны, понятие “математическое ожидание” означает специфическую операцию.

Наконец, имеется третье значение этого понятия, а именно: математическое ожидание как среднее арифметическое не любой, а генеральной совокупности. Важно отметить, что из перечисленных средних основной мерой положения является среднее арифметическое значение.

Среднее значение (центральное) – это мера положения, определяемая как обобщающий показатель положения и уровня центра распределения, т.е. того значения признака, вокруг которого концентрируются все другие варьирующие значения.

Среднее арифметическое (X) – это мера положения, определяемая как величина, характеризующая среднее значение признака по каждой из группировок с учетом численности этих группировок. Среднее совокупности n значений обозначается через и определяется

или .

Среднее арифметическое (М) определяется для квантованной величины соответственно как ,

где Pi вероятности, Х i – значения.

Свойства среднего:

1. Если вычтем из Хi, то получим величину отклонения i -значения. Сумма всех отклонений равна 0:

.

2. Если константу С прибавить к каждому значению Хi, то среднее преобразуется в среднее, равное + С.

3. Если каждое значение множества со средним умножить на С, то среднее станет С .







Дата добавления: 2015-09-18; просмотров: 953. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия