Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Распределение Пуассона





Распределение Пуассона – это вариант биноминального распределения для случаев, когда вероятность альтернативных признаков неодинакова, один из них наблюдается чаще других, т.е. величина одной из вероятностей становится бесконечно малой, а число испытаний неограниченно возрастает.

Это распределение вероятностей называется распределением Пуассона, названного в честь крупнейшего французского математика и физика Симеона Дени Пуассона (1781-1840), который получил это распределение среди других, размышляя об отправлении правосудия в уголовных судах. По Лапласу, каждый из судей мог совершить ошибку с некоторой вероятностью. Вероятность того, что мнение судьи справедливо, в свою очередь неизвестная величина. Какое же значение ей приписать? По этому поводу Даллас в “Опыте философии теории вероятностей” пишет:
“Я предлагаю таким образом, что она может меняться от 1/2 до единицы, но что она не может быть ниже 1/2. Если бы это было не так, то решение имело бы столь же малое значение, как жребий; оно имеет цену постольку, поскольку мнение судьи более склонно к истине, чем к заблуждению. С помощью отношения числа голосов, благоприятствующих обвиняемому, к неблагоприятствующим, я определяю затем вероятность справедливости мнения судьи”.

Как видите, произвола здесь более чем достаточно. Пуассона это не устраивает, и он строит другую математическую модель суда присяжных. Пуассон отказался от наделения высказываний присяжных каким-либо распределением, получаемым умозрительно, и сказал, что вероятность правильного суждения должна оцениваться по статистическим данным. Однако основное предположение Пуассона – это предположение о независимости суждений отдельных присяжных.

Построив математическую модель голосования в суде присяжных, далее Пуассон “работает” уже только в этой модели, описываемой распределением Бернулли. Число присяжных равно двенадцати, и перед Пуассоном возникает задача решения уравнения двенадцатой степени относительно неизвестной вероятности правильного голосования.

Даже кубическое уравнение решить непросто, а уравнение степени выше четвертой решить в принятом в школе смысле, то есть в виде формулы, содержащей алгебраические действия, вообще нельзя. Вот здесь Пуассон и развивает общий метод для решения столь сложных уравнений, используя, конечно, специфику изучаемой модели.

Таким образом, успех Пуассона – следствие мощного исследования в рамках определенной математической модели. В то же время сама математическая модель, не адекватная изучаемому явлению – суду присяжных, хорошо описывает многие физические, технические, биологические явления, и именно это обеспечило бессмертие и ей, и ее автору.

Распределение Пуассона также исходит из биноминального распределения, когда величина одной из вероятностей р → 0, т.е. становится бесконечно малой, а число испытаний стремится к бесконечности, т.е. неограниченно возрастает. В таком случае произведение np → l стремится к некоторой малой, отличной от нуля величине. Тогда вероятность P (m) того, что в последователь-ности из n независимых испытаний некое редкое событие А с вероятностью P (A) ≠ 0 осуществится m раз, определена формулой

.

Значит, распределение Пуассона полностью описывается одним параметром λ;, который характеризует и среднее значение распределения, и меру разброса случайных значений.

Близким к этому закону является, например, статистическое распределение числа военнослу-жащих конных войск, погибших под копытами лошадей. При этом редкие события как бы уходят из класса событий слепого случая, приобретают вероятностное толкование.

Форма распределения Пуассона также существенно варьирует от крайней асимметрии к симметрии (в зависимости от величины λ;).

Основные свойства, рассмотренные выше, – положение на числовой оси, рассеивание, скошенность и выпуклость – в общем случае не определяют полностью аналитическое выражение для закона распределения некоторой случайной величины. Наоборот, аналитическое выражение, сообразующееся как с теоретическими знаниями о специфике случайной величины, так и с экспериментальными данными о ней, несет всю необходимую информацию о случайной величине, в том числе и об основных ее свойствах.







Дата добавления: 2015-09-18; просмотров: 705. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия