Доказательство окончено.
Доказанная теорема позволяет сформулировать следующее утверждение: всякая интуитивно вычислимая числовая функция может быть вычислена подходящей системой Поста.
Этот тезис носит название тезиса Поста. Его справедливость следует из тезиса Черча и доказанной возможности вычисления всякой частично-рекурсивной функции с помощью систем Поста.
Следовательно, функциональные возможности систем Поста такие же, как и у программ, составленных на одном из универсальных языков программирования. Совпадение множеств функций, вычисляемых системами Поста, и частично рекурсивных функций позволяет использовать знания, о рекурсивных функциях при изучении возможностей систем Поста. Например, рассмотрим задачу о выводимости в системах Поста множества слов, являющегося дополнением множества слов, выводимых в некоторой системе Поста. Теорема 9.5. Существует система Поста P = (A, B, V, P), такая что множество (A È B)* \ WP не является множеством слов выводимых в системах Поста. Доказательство. Пусть U (n, x) универсальная частично рекурсивная функция для множества всех одноместных частично рекурсивных функций, определенная в главе 8. Рассмотрим вспомогательную функцию: Поскольку функция h является вычислимой, то существует вычисляющая h система Поста П h = (A h, B h, V h, P h), и не существует системы Поста П H = (A H, B H, V H, P H), такой что A h = A H и = (A h)* \ . Последнее утверждение является верным, поскольку существование системы П H влечет разрешимость множества 1. Пусть требуется определить принадлежность элемента множеству (n, x)Î A 1. 2. С помощью алгоритмом построения всех конечных выводов в произвольных системах Поста организуем последовательное заполнение множеств и . 3. Продолжаем процесс до тех пор, пока или не будет включено слово h (n, x) = 1. 4. Если слово h (n, x) = 1 добавляется во множество , то (n, x)Î A 1. Если слово h (n, x) = 1 добавляется во множество , то (n, x)Ï A 1. Поскольку слово h (n, x) = 1 обязательно выводится в одной из систем Поста или , то приведенная процедура за конечное число шагов определяет принадлежность произвольной пары (n, x) множеству A 1.
|