З бетінше орындауға арналған есептер. 1. Бір бөлмелі пәтердің баға жөнінде және бір аймақтағы 10 келісім бойынша оның жалпы ауданы
1. Бір бөлмелі пәтердің баға жөнінде және бір аймақтағы 10 келісім бойынша оның жалпы ауданы жөнінде деректер бар:
Пәтердің бағасы (млн.доллар)
|
|
|
|
|
|
|
|
|
|
| Аудан, м2
|
|
|
|
|
|
|
|
|
|
|
сызықты регрессия параметрлері есептелген және көрсеткіштер арасындағы байланыс тығыздығы белгілі.
Теңдеудің жалпы статистикалық маңыздылығын және сонымен қатар регрессия мен корреляция параметрлерін 0,05 маңыздылығы кезінде Фишер және Стьюдент критериілер арқылы бағалаңыз.
2. Қазақстанның 20 аймағы бойынша жандық орта жылдық кіріс теңдеуінің ауыр еңбекпен шұғылданатын адамдар, жалпы жұмыс істейтін (х1), белсенді тұрғындар, барлық тұрғындардың саны (х2) мәндерін Ғ-Фишер критериі арқылы статистикалық маңыздылығын бағалаңыз, егер корреляция коэффициенті болса. Жиынтық регрессия теңдеуінің және айнымалалары кезінде коэффициенттерінің маңыздылығын -Стьюдент критериі арқылы есептеңіз. Қосалқы корреляция коэффициенттері келесі мәндерде болады: , , .
12 тақырып. Гетероскедастикалық;
Мысал. 20 зерттеу бойынша азық-түлікке у (бірлік ақша) моделі құрылған у=20,84+0,44 х-тың әр мәнінде қалдықтар шамалары мынадай болады:
№
|
| Қалдық
|
|
| -12,0
|
|
| -11,7
|
|
| -5,4
|
|
| -5,6
|
|
| -2,8
|
|
| 0,8
|
|
| -1,6
|
|
| -4,0
|
|
| -6,2
|
|
| 6,6
|
|
| 13,7
|
|
| 12,2
|
|
| 4,4
|
|
| 4,0
|
|
| 3,4
|
|
| 23,2
|
|
| 16,2
|
|
| -16,8
|
|
| -27,8
|
|
| 9,8
|
1. Х айнымалының мәніне байланысты қалдықтар графигін салыңыз және шешімдер жасаңыз.
2. Гетероскедастиканы анықтау үшін Гольдфельд – Квандт тестін қолданыңыз.
3. Жалпыланған ең кіші квадраттар әдісін пайдаланып, модельді жақсартыңыз.
Шешуі. Қалдықтар графигі мынадай болады:

Әртүрлі х-тің мәндерінде қалдықтар тербелесі бірдей еместігін графигі көрсетеді: егер х<90 болса, онда e>0; ал егер х (90;200) аралықта жатса, онда e>0. Егер х>200 үлкен болса, е-нің өзгеру аралығы, х-тің кіші мәндеріне қарағанда, одан да көп. Сонымен, график арқылы қалдықтардың гетероскедастикалықтың барын болжауға болады.
3. Гольдфельд-Квандт тестін қолдану үшін у жөнінде ақпараттар қажет. Бұл ақпараттар берілмесе де, оларды табуға болады. Регрессия теңдеуі негізінде есептеуші мәндерін табамыз. Енді фактілік мәндерін табамыз.
|
| e
|
|
|
| -12,0
|
|
| 36,7
| -11,7
|
|
| 38,4
| -5,4
|
|
| 40,6
| -5,6
|
|
| 42,8
| -2,8
|
|
| 47,2
| 0,8
|
|
| 51,6
| -1,6
|
|
|
| -4,0
|
|
| 58,2
| -6,2
|
|
| 60,4
| 6,6
|
|
| 61,3
| 13,7
|
|
| 64,8
| 12,2
|
|
| 73,6
| 4,4
|
|
|
| 4,0
|
|
| 84,6
| 3,4
|
|
| 86,8
| 23,2
|
|
| 108,8
| 16,2
|
|
| 130,8
| -16,8
|
|
| 152,8
| -27,8
|
|
| 179,2
| 9,8
|
|
Орталық С бақылауларды кестеден шығарайық.. Жиынтықты екі бөлікке бөлеміз: а) бір бөлігінде х мәндері орта мәндерінен төмен; б) екінші бөлігінде – х мәндері орта мәндерінен жоғары. С=4 болсын, бұл бақылаулар мынадай реттік нөмірлерімен: 9,10,11,12. Онда әр бөлікте 8 бақылаулардан қалады. Әр бөліктін регрессия теңдеуін табамыз. Бірінші бөлігін қарастырамыз және оған есептеуші кестені құрамыз.
№
|
|
|
|
|
|
|
|
|
|
|
| -21,375
| 456,8906
| -16,125
| 260,0156
|
|
|
|
| -15,375
| 236,3906
| -13,125
| 172,2656
|
|
|
|
| -11,375
| 129,3906
| -5,125
| 26,26563
|
|
|
|
| -6,375
| 40,64063
| -3,125
| 9,765625
|
|
|
|
| -1,375
| 1,890625
| 1,875
| 3,515625
|
|
|
|
| 8,625
| 74,39063
| 9,875
| 97,51563
|
|
|
|
| 18,625
| 346,8906
| 11,875
| 141,0156
|
|
|
|
| 28,625
| 819,3906
| 13,875
| 192,5156
| Σ
|
|
|
|
| 2105,875
|
| 902,875
|
Қажетті мәндерін табамыз:
, , ,
, ,
Онда
, 
Сонда, мынадай теңдеуді аламыз 
Ұқсас екінші бөлігіне кесте құрамыз:
№
|
|
|
|
|
|
|
|
|
|
|
| -86,875
| 7547,266
| -35,875
| 1287,016
|
|
|
|
| -76,875
| 5909,766
| -31,875
| 1016,016
|
|
|
|
| -61,875
| 3828,516
| -25,875
| 669,5156
|
|
|
|
| -56,875
| 3234,766
| -3,875
| 15,01563
|
|
|
|
| -6,875
| 47,26563
| 11,125
| 123,7656
|
|
|
|
| 43,125
| 1859,766
| 0,125
| 0,015625
|
|
|
|
| 93,125
| 8672,266
| 11,125
| 123,7656
|
|
|
|
| 153,125
| 23447,27
| 75,125
| 5643,766
| Σ
|
|
|
|
| 54546,88
|
| 8878,875
|
Қажетті мәндерін табамыз:
, , ,
, ,
Онда
, .
Сонда, мынадай теңдеуді аламыз .
Енді әр топқа: у-тін теоретикалық мәндерін, қалдықтар е-ні және оның квадраттарын е2 анықтаймыз.
|
|
топ арқылы
| етоп арқылы
| е2топ арқылы
|
|
| 24,66967
| -2,66967
| 7,12716
|
|
| 28,44661
| -3,44661
| 11,8791
|
|
| 30,96456
| 2,035437
| 4,143002
|
|
| 34,11201
| 0,887992
| 0,78853
|
|
| 37,25945
| 2,740547
| 7,510599
|
|
| 43,55434
| 4,445658
| 19,76387
|
|
| 49,84923
| 0,150769
| 0,022731
|
|
| 56,14412
| -4,14412
| 17,17374
|
|
|
|
| Σ=68,40874
|
Ұқсас
|
| топ арқылы
| етоп арқылы
| е2топ
арқылы
|
|
| 82,24961
| -4,24961
| 18,05921
|
|
| 85,88995
| -3,88995
| 15,13168
|
|
| 91,35044
| -3,35044
| 11,22547
|
|
| 93,17061
| 16,82939
| 283,2284
|
|
| 111,3723
| 13,62773
| 185,715
|
|
| 129,5739
| -15,5739
| 242,5474
|
|
| 147,7756
| -22,7756
| 518,7277
|
|
| 169,6176
| 19,38241
| 375,6779
|
|
|
|
| Σ=1650,313
|
Енді қалдықтар квадраттарының ең үлкен соммасының кіші соммасына қатынасын табамыз: 
5% маңыздылық деңгейінде және дәреже еркіндік санында 8-2=6 (өйткені әр топта 8 элементтен бар) осы шаманы (Ғ фактолықты) Ғ-критериінің кестелік мәнімен салыстырамыз: . Сонымен Ғфакт>Ғкриз, бұдан мына қорытындыға келеміз: қалдықтардың гетероскедастикалығы бар. Қалдықтардың гетероскедастикалығын төмендету үшін жалпылаған ең кіші квадраттар әдісін қолдануға болады. Ол үшін есептеуші кесте құрамыз.
№
| x
| y
| y/x
| 1/x
|
|
|
| 0,733333
| 0,033333
|
|
|
| 0,694444
| 0,027778
|
|
|
| 0,825
| 0,025
|
|
|
| 0,777778
| 0,022222
|
|
|
| 0,8
| 0,02
|
|
|
| 0,8
| 0,016667
|
|
|
| 0,714286
| 0,014286
|
|
|
| 0,65
| 0,0125
|
|
|
| 0,611765
| 0,011765
|
|
|
| 0,744444
| 0,011111
|
|
|
| 0,815217
| 0,01087
|
|
|
| 0,77
| 0,01
|
|
|
| 0,65
| 0,008333
|
|
|
| 0,630769
| 0,007692
|
|
|
| 0,606897
| 0,006897
|
|
|
| 0,733333
| 0,006667
|
|
|
| 0,625
| 0,005
|
|
|
| 0,456
| 0,004
|
|
|
| 0,416667
| 0,003333
|
|
|
| 0,525
| 0,002778
| Σ
|
|
| 13,57993
| 0,260231
|
Нормалдық теңдеулер жүйесі мынадай болады:

Онда болады:

Теңдеулер жүйесін Крамер әдісімен шығарыңыз. Онда болады:
, 

Онда , .
Осыдан шыққан теңдеуінде гетероскедастикалылық жойылған.
Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...
|
Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...
|
Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...
|
Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...
|
Закон Гука при растяжении и сжатии
Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...
Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются:
• лаконичность...
Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...
|
Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...
Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...
Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...
|
|