Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

I. Задача о массе материальной пластины





Определение 1. Разбиением T простого компакта DÌR2 будем называть любое представление его в виде объединения конечного числа квадрируемых компактов (D SK) попарно без общих внутренних точек. Ø, i¹k; .

Эти компакты (D SK) назовем ячейками разбиения T компакта D, а площадь ячейки

(D SK) обозначим через D SK ().

Определение 2. Диаметром l(T ) разбиения T простогокомпакта D будем называть наибольший из диаметров его ячеек:

().

y

             
   
 
   
 
   
 
 

 

 


0 x

Очевидно, что для любого простого компакта ; R 2 можно указать разбиение T со сколь угодно малым диаметром. Наиболее удобным является разбиение с помощью прямых, параллельных осям координат.

 

Определение 3. Пусть в плоскости OXY расположена материальная пластина D (представляющая собой простой компакт) c поверхностной плотностью m(x0;y0) распределения масс в точке P0(x0;y0) пластины D называется предел

,

где D - любая квадрируемая часть пластины D, содержащая точку P0, а SD, m(D), l(D) - соответственно площадь, масса и диаметр этой части D пластины D.

 

Если пластина D однородная, т.е. , то ее масса m равна .

Пусть теперь пластина D неоднородная, т.е. в D.

Возьмем произвольное (достаточно мелкое) разбиение T пластины D на любое конечное число n ячеек (D Sk) (попарно без общих внутренних точек) с площадями D Sk (). В каждой ячейке (D Sk) выберем произвольную точку , тогда масса всей пластины D будет приближенно равна

. (1)

Определение 4. Массой m материальной пластины D называется предел суммы (1) при (если этот предел существует и конечен):

. (2)

Пределы вида (2) носят название двойных интегралов.

 







Дата добавления: 2015-09-18; просмотров: 693. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия