Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

I. Задача о массе материальной пластины





Определение 1. Разбиением T простого компакта DÌR2 будем называть любое представление его в виде объединения конечного числа квадрируемых компактов (D SK) попарно без общих внутренних точек. Ø, i¹k; .

Эти компакты (D SK) назовем ячейками разбиения T компакта D, а площадь ячейки

(D SK) обозначим через D SK ().

Определение 2. Диаметром l(T ) разбиения T простогокомпакта D будем называть наибольший из диаметров его ячеек:

().

y

             
   
 
   
 
   
 
 

 

 


0 x

Очевидно, что для любого простого компакта ; R 2 можно указать разбиение T со сколь угодно малым диаметром. Наиболее удобным является разбиение с помощью прямых, параллельных осям координат.

 

Определение 3. Пусть в плоскости OXY расположена материальная пластина D (представляющая собой простой компакт) c поверхностной плотностью m(x0;y0) распределения масс в точке P0(x0;y0) пластины D называется предел

,

где D - любая квадрируемая часть пластины D, содержащая точку P0, а SD, m(D), l(D) - соответственно площадь, масса и диаметр этой части D пластины D.

 

Если пластина D однородная, т.е. , то ее масса m равна .

Пусть теперь пластина D неоднородная, т.е. в D.

Возьмем произвольное (достаточно мелкое) разбиение T пластины D на любое конечное число n ячеек (D Sk) (попарно без общих внутренних точек) с площадями D Sk (). В каждой ячейке (D Sk) выберем произвольную точку , тогда масса всей пластины D будет приближенно равна

. (1)

Определение 4. Массой m материальной пластины D называется предел суммы (1) при (если этот предел существует и конечен):

. (2)

Пределы вида (2) носят название двойных интегралов.

 







Дата добавления: 2015-09-18; просмотров: 693. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия