Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

II. Замена переменных в тройном интеграле





Определение. Отображение F

(1)

тела на тело называется регулярным, если:

1) Это отображение взаимно-однозначно;

2) отображение F непрерывно-дифференцируемо в Q*,т.е. (функции имеют в Q* непрерывные частные производные 1-го порядка

3) якобиан отображения F отличен от нуля и в Q*:

.

Справедливо следующее утверждение:

Теорема. Если отображение F компакта Q* на Q регулярно, то

(2)

Замечание. Формула (2) имеет место и в случае, когда якобиан отображения (1) в отдельных точках, линиях или на поверхностях с нулевым объемом обращается в нуль, а само отображение не является взаимно-однозначным на границе тела Q.

Часто вычисление тройного интеграла значительно упрощается, если перейти от декартовых координат к цилиндрическим или сферическим.

1. Тройной интеграл в цилиндрических координатах

Пусть x,y,z – декартовы координаты точки R3 относительно заданной прямоугольной сиcтемы координат OXYZ. Цилиндрические координаты этой точки - это тройка чисел r, j, z, где r, j - полярные координаты точки P (проекции точки M на плоскость OXY), а z - обычная декартова апликата z точки M ( см.Рис. 2).

z

M

 

z

y y

j r

x P

x Рис.2

Декартовы координаты точки M связаны с цилиндрическими координатами этой точки равенствами:

. (3)

Якобиан отображения (3) равен r.

.

Формула замены переменных в тройном интеграле при переходе от декартовых координат к цилиндрическим принимает вид:

. (4)

Пример. Вычислим тройной интеграл

, где

тело Q ограничено поверхностями (см. Рис. 3).

à z

z=2

y

       
   

 


D

2z = x2+y2

0 y 2 x

 

х Рис.3

 

Тело Q –правильный в направлении оси Oz простой компакт. Его проекция на плоскость OXY есть круг:

.

Переходя к цилиндрическим координатам и используя формулу (4). будем иметь:

¨;







Дата добавления: 2015-09-18; просмотров: 514. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия