Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Відстань від точки до прямої





 
Розглянемо т. і пряму . Візьмемо довільну точку прямої (рис.3.12). Тоді, площа паралелограма :

Рисунок 3.12 (3.15)

Приклад 1. Знайти відстань від т. до прямої .

Розв’язання.

Знайдемо координати вектора , де : . Напрямний вектор прямої , . Тоді векторний добуток векторів і дорівнює:

Підставивши дані в (3.15), отримаємо:

Відповідь: .

 

 

Криві другого порядку

Означення 1. Криві, загальне рівняння яких має вигляд , (3.16)

де , називаються кривими другого порядку.

Коло

Означення 2. Крива другого порядку (3.16) є колом (рис.3.13) тоді і тільки тоді, коли:

1)

 
коефіцієнти при квадратах змінних координат рівні між собою ;

2) відсутній член, що містить добуток змінних координат , тобто

, (3.17)

де – центр кола, – радіус кола.

Якщо – центр кола співпадає з

Рисунок 3.13 початком координат: (3.18)

Еліпс

Означення 3. Крива другого порядку (3.16) називається еліпсом, якщо коефіцієнти і мають однакові знаки, тобто > :

(3.19)

– центр еліпса, – півосі еліпса.

Якщо , то центр еліпса знаходиться в точці (рис.3.14) і:

(3.20)

Рисунок 3.14

Означення 4. Точки і , де , > називаються фокусами еліпса.

Означення 5. Відношення , називається ексцентриситетом еліпса.

Характеристична властивість еліпса

Теорема 1. Для будь-якої точки еліпса сума її фокальних радіусів стала і дорівнює : .

Доведення.

, .

.

Аналогічно .

Оскільки , то і . Теорему доведено.







Дата добавления: 2015-09-18; просмотров: 703. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия