Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Множення вектора на число





Означення 4. Добутком вектора на число називається вектор , який задовольняє наступні умови:

1) довжина вектора дорівнює добутку довжини на

модуль числа ;

2) якщо > , то і співнапрямлені,

якщо < 0, то і протилежно напрямлені (рис.2.5).

 

Рисунок 2.5

Властивості добутку вектора на число

1. , .

2. .

3. .

4. .

2.3 Орт вектора. Умова колінеарності

Означення 1. Вектор, модуль якого дорівнює одиниці, називається ортом (одиничним вектором).

Означення 2. Ортом ненульового вектора називається вектор , модуль якого дорівнює одиниці, а напрямок співпадає з напрямком вектора : .

Справедлива рівність: , .

Теорема 1. (Ознака колінеарності 2-х векторів) Для того, щоб два вектори були колінеарні необхідно і достатньо, щоб один із них дорівнював добутку деякого числа на інший вектор.

Нехай вектор утворює з осями координат кути , , . Напрямними косинусами осі (або напрямку ) називаються косинуси цих кутів (, , ). Якщо напрямок заданий одиничним вектором , то напрямні косинуси є його координатами . Напрямні косинуси пов’язані між собою

Рисунок 2.6 співвідношенням: .

 

2.4 Лінійна залежність та незалежність векторів

Означення 1. Вектори , називаються лінійно залежними, якщо існують такі числа одночасно не всі рівні нулю, що виконується рівність . В іншому випадку вектори називаються лінійно незалежними.

Якщо вектори , лінійно залежні і наприклад , тоді тобто, – є лінійною комбінацією векторів , .

Таким чином, якщо вектори лінійно залежні, то хоча б один із них лінійно виражається через решту векторів.

Геометрично: (рис. 2.7).

.

 

 

Рисунок 2.7

Теорема 1. (Про лінійну залежність 2-х векторів) Два вектори лінійно залежні тоді і тільки тоді, коли вони колінеарні.

Доведення.

– лінійно залежні .

Тоді за ознакою колінеарності .

Теорему доведено.

Теорема 2. (Про лінійну залежність 3-х векторів) Три вектори лінійно залежні тоді і тільки тоді, коли вони компланарні.

Доведення.

1. Необхідність.

Нехай лінійно залежні. Покажемо, що вони компланарні. З того що вектори лінійно залежні, випливає :

а) якщо , то лежить з ними на одній прямій, тоді компланарні;

б) якщо , тоді за правилом паралелограма маємо, що всі вектори лежать в одній площині компланарні.

2. Достатність.

Нехай компланарні. Покажемо, що вони лінійно залежні.

а) лінійно залежні;

б) – попарно колінеарні. Нехай (рис.2.8).

1) ;

2) тоді

– лінійно залежні.

 

Рисунок 2.8

Наслідок: 1. Три компланарні вектори лінійно незалежні.

2. Чотири вектори в трьохвимірному лінійному просторі лінійно залежні завжди.

Теорема 3. Якщо два вектори неколінеарні, то будь-який вектор що лежить в площині векторів , можна лінійно виразити через вектори і єдиним способом.

Доведення.

компланарні (за умовою), тоді існують такі числа одночасно не рівні нулю, що .

Розглянемо два випадки:

а) нехай, наприклад, , тоді – лінійно залежні: .

б) , , або .

Так як лінійно незалежні, то .

або

.

Теорему доведено.

Теорема 4. Якщо три вектори – некомпланарні, то будь-який вектор можна лінійно виразити через , притому єдиним способом: .

 

2.5 Базис і координати вектора

Означення 1. Множину найрізноманітніших систем () дійсних чисел називають n-вимірним дійсним простором і позначають через Rn.

Кожну таку систему чисел назвемо точкою або вектором Rn. Числа – координати точки (вектора) або компоненти вектора.

Означення 2. Сукупність лінійно незалежних векторів -вимірного простору називається його базисом.

Зауваження. Простір називається лінійним векторним простором, якщо в ньому визначені операції додавання векторів і множення на число.

Теорема 1. Кожен вектор лінійного -вимірного простору можна представити єдиним способом у вигляді лінійної комбінації векторів базису

Числа називаються координатами вектора в базисі , тобто .







Дата добавления: 2015-09-18; просмотров: 599. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия