Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРЕДЕЛЫ. Постоянная является пределом функции в точке , если их разность во всех точках, кроме





Постоянная является пределом функции в точке , если их разность во всех точках, кроме , по абсолютному значению остается меньше бесконечно малого положительного числа e.

Если для <e, то .

Практическое вычисление пределов основывается на следующих теоремах:

Если существуют и то

1.26. ±

1.27. ×

1.28. (при ≠0).

 

Используют также следующие пределы:

- первый замечательный предел

- второй замечательный предел.

 

Иногда в процессе отыскания предела при замене аргумента определенным значением функция получает выражение или - неопределенность. Хотя это выражение не имеет определенного смысла, функция может иметь конечный предел при данном стремлении аргумента. Это становится очевидным, если функцию преобразовать: разложить ее на множители, или поделить на аргумент, или умножить на сопряженное выражение, и т.д.

Например:

1. при замене преобразовывается в неопределенность .

Раскрыть неопределенность можно, поделив все члены выражения, стоящего под знаком предела, на высшую степень аргумента, то есть на :

= .

 

2. - неопределенность.

Раскрыть данную неопределенность можно, разложив выражения, стоящие в числителе и знаменателе под знаком предела, на множители, то есть:

3. - неопределенность.

Умножив и поделив выражение, стоящее под знаком предела, на сопряженное выражение , получаем следующее выражение:

= .

 

Найти следующие пределы:

 

1.1. . (Ответ: 3) 1.6. . (Ответ: 9/2)
1.2. . (Ответ: 1000) 1.7. . (Ответ: 1/3)
1.3. . (Ответ: - ) 1.8. . (Ответ: )
1.4. . (Ответ: ) 1.9. . (Ответ: 1)
1.5. . (Ответ: 0) 1.10. . (Ответ: 4)
1.11. . (Ответ: 0) 1.21. . (Ответ: 1/2)
1.12. . (Ответ: 0) 1.22 . (Ответ: 0,6)
1.13. . (Ответ: 1/3) 1.23. . (Ответ: 4)
1.14. . (Ответ: 1/2) 1.24. . (Ответ: 0)
1.15. . (Ответ: 0) 1.25. . (Ответ: 4)
1.16. . (Ответ: 1/4)   1.26. . (Ответ: e=2,718)  
1.17. . (Ответ: ) 1.27. . (Ответ: 1)
1.18. . (Ответ: 3) 1.28. . (Ответ: e3)
1.19. . (Ответ: 1) 1.29. . (Ответ: 1/2)
1.20. . (Ответ: 3) 1.30. . (Ответ: 1/3)  






Дата добавления: 2015-09-18; просмотров: 476. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия