Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные свойства неопределенного интеграла





 

или

 

 

 

 

Таблица простейших интегралов  
1. 7.
2. 8.
  3. 9.
4.     10.    
5. 11.    
6.   12.  


 

Проинтегрировать функцию значит найти её неопределенный интеграл. Непосредственное интегрирование основано на прямом использовании основных свойств неопределенного интеграла и таблицы простейших интегралов.

 

Рассмотрим следующие примеры:

 

1). Найти интеграл

.

Разделив почленно числитель на знаменатель, разложим подынтегральную функцию на слагаемые, после чего проинтегрируем каждое из полученных выражений:

 

Через С обозначен результат суммирования всех произвольных постоянных, получающихся при интегрировании каждого слагаемого.

 

2). Вычислить интеграл

 

Представим подынтегральную функцию следующим образом:

Тогда

 

3). Найти интеграл

 

Представим подынтегральную функцию в таком виде:

 

Подставим полученное выражение:

 

 

4). Вычислить интеграл

 

Преобразуем подынтегральную функцию таким образом:

 

Подставляя полученную функцию, вычисляем интеграл:

 

Используя правила интегрирования и таблицу интегралов найти следующие интегралы:

 

 

  5.31
  5.32
  5.33
  5.34
  5.35  
  5.36  
    5.37
  5.38
  5.39
    5.40

 







Дата добавления: 2015-09-18; просмотров: 593. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия