Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ





§1.Основные понятия.

Уравнение, связывающее независимую переменную, неизвестную функцию и ее производные или дифференциалы различных порядков, называется дифференциальным уравнением.

Порядком дифференциального уранения называется порядок старшей производной, входящей в это уравнение. Например, уравнение - первого порядка.

Функция y =j(x), удовлетворяющая дифференциальному уравнению, называется решением этого уравнения.

Решение дифференциального уравнения, содержащее столько независимых произвольных постоянных, каков порядок уравнения, называется общим решением этого уравнения.

Например, для уравнения первого порядка общее решение имеет вид y =j(x,с).

Функции, получаемые из общего решения при различных числовых значениях произвольных постоянных, называются частными решениями.

Для нахождения частного решения дифференциального уравнения задаются начальные условия.

Рассмотрим следующие примеры.

1). Проверить, является ли функция y=cosx решением уравнения

y²+y=0.

Найдем y¢=-sinx, y²=-cosx. Подставляя выражения для y² и y в данное уравнение, получаем

y²+y=-cosx+cosx=0,

т.е. функция y=cosx является решением данного дифференциального уравнения.

2). Общее решение дифференциального уравнения y¢-3y=0 иммет вид

y=Ce3x.

Найти его частное решение, удовлетворяющее начальному условию y(1)=e3.

Значение произвольной постоянной С, соответствующее некому частному решению, получается в результате подстановки в выражение общего решения заданных начальных условий: e3=Ce3, откуда С=1. Подставляя полученное значение С=1 в общее решение, найдем частное решение y=e3x, удовлетворяющее заданным начальным условиям.

 

6.1 Выяснить, являются ли решениями дифференциального уравнения следующие функции:

 


5.1. ;

5.2. ;

5.3. ;

5.4. .


 

6.2 Выяснить, являются ли решениями дифференциального уравнения следующие функции:


1. ;

2. ;

3. ;

4. .


6.3 Общее решение дифференциального уравнения .

Найти частное решение, удовлетворяющее начальным условиям .

 







Дата добавления: 2015-09-18; просмотров: 465. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия