Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ





§1.Основные понятия.

Уравнение, связывающее независимую переменную, неизвестную функцию и ее производные или дифференциалы различных порядков, называется дифференциальным уравнением.

Порядком дифференциального уранения называется порядок старшей производной, входящей в это уравнение. Например, уравнение - первого порядка.

Функция y =j(x), удовлетворяющая дифференциальному уравнению, называется решением этого уравнения.

Решение дифференциального уравнения, содержащее столько независимых произвольных постоянных, каков порядок уравнения, называется общим решением этого уравнения.

Например, для уравнения первого порядка общее решение имеет вид y =j(x,с).

Функции, получаемые из общего решения при различных числовых значениях произвольных постоянных, называются частными решениями.

Для нахождения частного решения дифференциального уравнения задаются начальные условия.

Рассмотрим следующие примеры.

1). Проверить, является ли функция y=cosx решением уравнения

y²+y=0.

Найдем y¢=-sinx, y²=-cosx. Подставляя выражения для y² и y в данное уравнение, получаем

y²+y=-cosx+cosx=0,

т.е. функция y=cosx является решением данного дифференциального уравнения.

2). Общее решение дифференциального уравнения y¢-3y=0 иммет вид

y=Ce3x.

Найти его частное решение, удовлетворяющее начальному условию y(1)=e3.

Значение произвольной постоянной С, соответствующее некому частному решению, получается в результате подстановки в выражение общего решения заданных начальных условий: e3=Ce3, откуда С=1. Подставляя полученное значение С=1 в общее решение, найдем частное решение y=e3x, удовлетворяющее заданным начальным условиям.

 

6.1 Выяснить, являются ли решениями дифференциального уравнения следующие функции:

 


5.1. ;

5.2. ;

5.3. ;

5.4. .


 

6.2 Выяснить, являются ли решениями дифференциального уравнения следующие функции:


1. ;

2. ;

3. ;

4. .


6.3 Общее решение дифференциального уравнения .

Найти частное решение, удовлетворяющее начальным условиям .

 







Дата добавления: 2015-09-18; просмотров: 465. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия