Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вероятность случайного события – это количественная оценка объективной возможности появления данного события.





В математической статистике вероятностью случайного события называют предел, к которому стремится относительная частота события при неограниченном увеличении числа испытаний n:

,

где – количество появлений события А.

Переменные величины, которые принимают различные значения в зависимости от стечения случайных обстоятельств, называют случайными. Различают дискретные и непрерывные случайные величины.

Случайную величину называют дискретной, если она принимает счетное множество значений (число больных на приеме у врача, число дней нетрудоспособности).

Случайная величина называется непрерывной, если она принимает любые значения внутри какого-либо интервала (рост человека, масса тела человека).

Обычно отдельные значения случайной величины появляются с определенной вероятностью. Соотношение, устанавливающее связь между значением случайной величины и соответствующей ей вероятностью называют законом распределения. Закон распределения можно представить в виде статистического ряда-таблицы, где указаны значения случайной величины и их вероятности (для дискретной величины), графически (для непрерывной величины) и аналитически.

Дискретная случайная величина задается функцией вероятности – зависимостью вероятности случайной величины от ее значения :

.

Непрерывная случайная величина задается функцией распределения вероятностей . Функция распределения вероятностей, или плотность вероятности, является первой производной вероятности случайной величины по ее значению

.

Отсюда следует, что

, (1)

или, интегрируя это выражение в соответствующих пределах, находим вероятность того что случайная величина принимает какое-либо значение в интервале :

. (2)

 

 







Дата добавления: 2015-09-18; просмотров: 671. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия