Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интервальная оценка. Интервальная оценка





при малой выборке. Распределение Стьюдента

Точечная оценка, особенно при малой выборке, может значительно отличаться от истинных параметров генеральной совокупности. При небольшом объеме выборки пользуются интервальными оценками.

В этом случае указывается интервал (доверительный интервал или доверительные границы), в котором с определенной (доверительной) вероятностью , которую иногда называют «надежностью», находится истинное значение исследуемой или измеряемой величины, например, среднее значение генеральной совокупности.

Иначе говоря, определяет вероятность, с которой осуществляются следующие неравенства:

,

где положительное число характеризует точность оценки. Интервал значений от до называется доверительным интервалом. Разумеется, чем большей надежности мы требуем, тем большим получается доверительный интервал и, наоборот, чем больший доверительный интервал мы задаем, тем вероятнее, что результаты измерений не выйдут за его пределы.

Сказанное выше относилось к большому числу измерений. При малом числе измерений (условно будем считать, что при n <30) распределение случайных величин носит несколько отличный от закона нормального распределения характер. Это распределение было выявлено в 1908 году английским математиком Госсетом, опубликовавшим работу на эту тему под псевдонимом «Стьюдент» -студент. Естественно, что при данной надежности доверительный интервал при малом числе измерений в серии должен быть шире, чем при большом числе измерений (чем меньше число измерений, тем больше среднее число измерений отличается от математического ожидания) и должен зависеть не только от , но и от n. Учитывая это, было предложено, в случае небольшого числа измерений, полуширину доверительного интервала (отклонение выборочного среднего от генерального среднего вычислять через S и некоторый параметр , который называется коэффициентом Стьюдента и который выбирается по заданным и n по таблицам (см. табл.1):

,

но тогда < .

 

Таблица 1

Значение коэффициента Стьюдента

 

n a 0.95 0.99 0.999 n a 0.95 0.99 0.999
  12.706 63.657 636.619   2.103 2.878 3.922
  4.303 9.925 31.598   2.093 2.861 3.883
  3.182 5.841 12.941   2.086 2.845 3.850
  2.776 4.604 8.610   2.080 2.831 3.819
  2.571 4.032 6.859   2.074 2.819 3.792
  2.447 3.707 5.950   2.069 2.807 3.767
  2.365 3.499 5.405   2.064 2.797 3.745
  2.306 3.355 5.041   2.060 2.787 3.725
  2.262 3.250 4.781   2.056 2.779 3.707
  2.228 3.169 4.587   2.052 2.771 3.690
  2.201 3.106 4.487   2.048 2.763 3.674
  2.179 3.055 4.318   2.045 2.756 3.659
  2.160 3.012 4.221   2.042 2.750 3.646
  2.145 2.977 4.140   2.021 2.704 3.551
  2.131 2.947 4.073   2.000 2.660 3.460
  2.120 2.921 4.015   1.980 2.617 3.374
  2.110 2.898 3.965 ¥ 1.960 2.576 3.291

Анализ табл. 1 для значений коэффициента Стьюдента показывает, что при числе наблюдений 30 и более (большая выборка) при доверительной вероятности 0,95 он оказывается равным 2, при доверительной вероятности 0,997 - Это означает, что для большой выборки мы опять пришли к нормальному закону распределения или, другими словами, распределение Стьюдента перешло в распределение Гаусса. Приведем (рис.3) график зависимости коэффициента Стьюдента от числа измерений для , который хорошо иллюстрирует только что сделанный вывод. Достаточно хорошо аппроксимировать его можно зависимостью:

.

 
 

Рис. 3

 







Дата добавления: 2015-09-18; просмотров: 473. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия