Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интервальная оценка. Интервальная оценка





при малой выборке. Распределение Стьюдента

Точечная оценка, особенно при малой выборке, может значительно отличаться от истинных параметров генеральной совокупности. При небольшом объеме выборки пользуются интервальными оценками.

В этом случае указывается интервал (доверительный интервал или доверительные границы), в котором с определенной (доверительной) вероятностью , которую иногда называют «надежностью», находится истинное значение исследуемой или измеряемой величины, например, среднее значение генеральной совокупности.

Иначе говоря, определяет вероятность, с которой осуществляются следующие неравенства:

,

где положительное число характеризует точность оценки. Интервал значений от до называется доверительным интервалом. Разумеется, чем большей надежности мы требуем, тем большим получается доверительный интервал и, наоборот, чем больший доверительный интервал мы задаем, тем вероятнее, что результаты измерений не выйдут за его пределы.

Сказанное выше относилось к большому числу измерений. При малом числе измерений (условно будем считать, что при n <30) распределение случайных величин носит несколько отличный от закона нормального распределения характер. Это распределение было выявлено в 1908 году английским математиком Госсетом, опубликовавшим работу на эту тему под псевдонимом «Стьюдент» -студент. Естественно, что при данной надежности доверительный интервал при малом числе измерений в серии должен быть шире, чем при большом числе измерений (чем меньше число измерений, тем больше среднее число измерений отличается от математического ожидания) и должен зависеть не только от , но и от n. Учитывая это, было предложено, в случае небольшого числа измерений, полуширину доверительного интервала (отклонение выборочного среднего от генерального среднего вычислять через S и некоторый параметр , который называется коэффициентом Стьюдента и который выбирается по заданным и n по таблицам (см. табл.1):

,

но тогда < .

 

Таблица 1

Значение коэффициента Стьюдента

 

n a 0.95 0.99 0.999 n a 0.95 0.99 0.999
  12.706 63.657 636.619   2.103 2.878 3.922
  4.303 9.925 31.598   2.093 2.861 3.883
  3.182 5.841 12.941   2.086 2.845 3.850
  2.776 4.604 8.610   2.080 2.831 3.819
  2.571 4.032 6.859   2.074 2.819 3.792
  2.447 3.707 5.950   2.069 2.807 3.767
  2.365 3.499 5.405   2.064 2.797 3.745
  2.306 3.355 5.041   2.060 2.787 3.725
  2.262 3.250 4.781   2.056 2.779 3.707
  2.228 3.169 4.587   2.052 2.771 3.690
  2.201 3.106 4.487   2.048 2.763 3.674
  2.179 3.055 4.318   2.045 2.756 3.659
  2.160 3.012 4.221   2.042 2.750 3.646
  2.145 2.977 4.140   2.021 2.704 3.551
  2.131 2.947 4.073   2.000 2.660 3.460
  2.120 2.921 4.015   1.980 2.617 3.374
  2.110 2.898 3.965 ¥ 1.960 2.576 3.291

Анализ табл. 1 для значений коэффициента Стьюдента показывает, что при числе наблюдений 30 и более (большая выборка) при доверительной вероятности 0,95 он оказывается равным 2, при доверительной вероятности 0,997 - Это означает, что для большой выборки мы опять пришли к нормальному закону распределения или, другими словами, распределение Стьюдента перешло в распределение Гаусса. Приведем (рис.3) график зависимости коэффициента Стьюдента от числа измерений для , который хорошо иллюстрирует только что сделанный вывод. Достаточно хорошо аппроксимировать его можно зависимостью:

.

 
 

Рис. 3

 







Дата добавления: 2015-09-18; просмотров: 473. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия