Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

С помощью коэффициента парной корреляции





Допустим, проводится независимое измерение различных параметров у одного типа объектов. Из этих данных можно получить качественно новую информацию – о взаимосвязи этих параметров.

Например, измеряем рост и вес человека, или рост и размер обуви. Каждое измерение представлено точкой в двумерном пространстве:

Рис. 4

Несмотря на то, что величины носят случайный характер, в общем, наблюдается некоторая зависимость – величины коррелируют. В данном случае это положительная корреляция (при увеличении одного параметра второй тоже увеличивается).

Возможны также такие случаи:

Отрицательная корреляция: Отсутствие корреляции:

Рис. 5 Рис.6

Связь между величинами может быть и нелинейной (рис. 7).

Рис. 7

Взаимосвязь между переменными необходимо охарактеризовать численно, чтобы, например, различать случаи, приведенные на рис.8 и рис.9.

Рис. 8 Рис. 9

Все, что мы видим на приведенных выше рисунках, называют диаграммой рассеивания.

Если облако точек напоминает очертания некоторой линии, то можно предполагать, что мы видим на диаграмме рассеяния именно такую по форме зависимость, однако искаженную воздействием как случайных, так и неучтенных факторов, вызывающим отклонение точек от теоретической формы.

Поскольку наиболее простой формой в математике является прямая пропорциональная зависимость, то в корреляционном и регрессионном анализе наиболее популярны линейные модели.

Для численных оценок вводится коэффициент корреляции (коэффициент парной корреляции) . Для линейной связи переменных он рассчитывается по формуле Пирсона.

Коэффициент корреляции изменяется в пределах от -1 до 1. В данном случае это линейный коэффициент корреляции, он показывает линейную взаимосвязь между и xi. Коэффициент корреляцииравен 1 (или -1), если связь линейна.

Коэффициент парной корреляции вычисляется для количественных признаков. Коэффициент корреляции симметричен, т.е. не изменяется, если X и Y поменять местами, и является величиной безразмерной.

Коэффициент корреляции не изменяется при изменении единиц измерения признаков X и Y.

Сам по себе коэффициент корреляции не имеет содержательной интерпретации. Однако его квадрат (r2), называемый коэффициентом детерминации (обозначается d и обычно выражается в %), имеет простой смысл – это показатель того, насколько изменения зависимого признака объясняются изменениями независимого.

Более точно, это доля дисперсии (разброса) одного признака, объясняемая влиянием другого (если связь интерпретировать как причинно-следственную).

Из определения коэффициента детерминации следует, что он принимает значения в диапазоне от 0% до 100%.

Если две переменные функционально линейно зависимы (точки на диаграмме рассеяния лежат на одной прямой), то можно сказать, что изменение одной из них полностью объясняется изменением другой. Это как раз тот случай, когда коэффициент детерминации равен 100% (при этом коэффициент корреляции может быть равен как 1, так и –1).

 

Коэффициенты корреляции и детерминации

Если две переменные линейно независимы (метод наименьших квадратов, о котором пойдет речь в следующем параграфе, дает горизонтальную прямую), то одна из них в своих изменениях никоим образом не определяет другую – в этом случае коэффициент детерминации равен нулю. В остальных случаях коэффициент детерминации указывает, какая часть изменений одной переменной объясняется изменениями другой переменной.

Чем выше по модулю (по абсолютной величине) значение коэффициента корреляции, тем сильнее связь между признаками.

Принято считать, что коэффициенты корреляции, которые по модулю больше 0,7, говорят о сильной связи (при этом коэффициенты детерминации > 50%, т.е. один признак определяет другой более чем наполовину). Коэффициенты корреляции, которые по модулю меньше 0,7, но больше 0,5, говорят о связи средней силы (при этом коэффициенты детерминации меньше 50%, но больше 25%). Наконец, коэффициенты корреляции, которые по модулю меньше 0,5, говорят о слабой связи (при этом коэффициенты детерминации меньше 25%).

Оценить глубину корреляционной связи и характер связи можно, пользуясь табл. 2:

Таблица 2.

Глубина связи
=0 Отсутствует
Слабая
Умеренная
Значительная
Сильная
Очень сильная
=1 Полная

 

Если >0, то связь прямая (положительная), при <0 связь – обратная (отрицательная).

Методами корреляционного анализа решаются задачи:

Взаимосвязь. Есть ли взаимосвязь между параметрами?

Прогнозирование. Если известно поведение одного параметра, то можно предсказать поведение другого параметра, коррелирующего с первым.

Классификация и идентификация объектов. Корреляционный анализ помогает подобрать набор независимых признаков для классификации.

 







Дата добавления: 2015-09-18; просмотров: 447. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия