Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нормальный закон распределения случайных величин





Существуют различные законы распределения случайных величин. Для непрерывных величин наиболее распространенным является так называемый нормальный закон распределения или закон Гаусса. В соответствии с этим законом распределяются масса тела, рост человека, физиологические показатели и многое другое. В ряде случаев этот закон применим для анализа распределений дискретных случайных величин.

Функция плотности вероятностей нормального закона распределения случайных величин имеет следующий вид:

, (9)

где основание натурального логарифма, математическое ожидание , среднее квадратичное отклонение случайной величины .

График этой зависимости называется кривой нормального закона распределения или кривой Гаусса (рис.1). Кривая имеет колоколообразную форму, она симметрична и асимптотически приближается к нулю. Из рисунка видно, что наиболее вероятным значением случайной величины является математическое ожидание . При отклонении величины в большую или меньшую сторону вероятность ее уменьшается.

Рис. 1

На кривой имеются две характерные точки, где выпуклость ее переходит в вогнутость. Абсциссы этих точек равны и .

 

Таблица 1

Интервал Р,%  
  68,3
  95,0  
  95,5  
  99,0  
  99,7  
  Здесь через обозначено .  
               

Зная функцию плотностей вероятностей, можно рассчитать вероятность попадания случайной величины в заданный интервал значений . Например, вероятность попадания в интервал между значениями и равна:

,

или, графически, вероятность попадания оказывается равной площади криволинейной трапеции, заштрихованной на графике, приведенном на рис.1 в.

Рассчитано (табл.1), что вероятность появления случайной величины в интервале составляет 0,68, в интервале примерно 0,95, а в интервале вероятность появления случайной величины составляет 0,997.

 

 







Дата добавления: 2015-09-18; просмотров: 474. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия