Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нормальный закон распределения случайных величин





Существуют различные законы распределения случайных величин. Для непрерывных величин наиболее распространенным является так называемый нормальный закон распределения или закон Гаусса. В соответствии с этим законом распределяются масса тела, рост человека, физиологические показатели и многое другое. В ряде случаев этот закон применим для анализа распределений дискретных случайных величин.

Функция плотности вероятностей нормального закона распределения случайных величин имеет следующий вид:

, (9)

где основание натурального логарифма, математическое ожидание , среднее квадратичное отклонение случайной величины .

График этой зависимости называется кривой нормального закона распределения или кривой Гаусса (рис.1). Кривая имеет колоколообразную форму, она симметрична и асимптотически приближается к нулю. Из рисунка видно, что наиболее вероятным значением случайной величины является математическое ожидание . При отклонении величины в большую или меньшую сторону вероятность ее уменьшается.

Рис. 1

На кривой имеются две характерные точки, где выпуклость ее переходит в вогнутость. Абсциссы этих точек равны и .

 

Таблица 1

Интервал Р,%  
  68,3
  95,0  
  95,5  
  99,0  
  99,7  
  Здесь через обозначено .  
               

Зная функцию плотностей вероятностей, можно рассчитать вероятность попадания случайной величины в заданный интервал значений . Например, вероятность попадания в интервал между значениями и равна:

,

или, графически, вероятность попадания оказывается равной площади криволинейной трапеции, заштрихованной на графике, приведенном на рис.1 в.

Рассчитано (табл.1), что вероятность появления случайной величины в интервале составляет 0,68, в интервале примерно 0,95, а в интервале вероятность появления случайной величины составляет 0,997.

 

 







Дата добавления: 2015-09-18; просмотров: 474. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2026 год . (0.008 сек.) русская версия | украинская версия