Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нормальный закон распределения случайных величин





Существуют различные законы распределения случайных величин. Для непрерывных величин наиболее распространенным является так называемый нормальный закон распределения или закон Гаусса. В соответствии с этим законом распределяются масса тела, рост человека, физиологические показатели и многое другое. В ряде случаев этот закон применим для анализа распределений дискретных случайных величин.

Функция плотности вероятностей нормального закона распределения случайных величин имеет следующий вид:

, (9)

где основание натурального логарифма, математическое ожидание , среднее квадратичное отклонение случайной величины .

График этой зависимости называется кривой нормального закона распределения или кривой Гаусса (рис.1). Кривая имеет колоколообразную форму, она симметрична и асимптотически приближается к нулю. Из рисунка видно, что наиболее вероятным значением случайной величины является математическое ожидание . При отклонении величины в большую или меньшую сторону вероятность ее уменьшается.

Рис. 1

На кривой имеются две характерные точки, где выпуклость ее переходит в вогнутость. Абсциссы этих точек равны и .

 

Таблица 1

Интервал Р,%  
  68,3
  95,0  
  95,5  
  99,0  
  99,7  
  Здесь через обозначено .  
               

Зная функцию плотностей вероятностей, можно рассчитать вероятность попадания случайной величины в заданный интервал значений . Например, вероятность попадания в интервал между значениями и равна:

,

или, графически, вероятность попадания оказывается равной площади криволинейной трапеции, заштрихованной на графике, приведенном на рис.1 в.

Рассчитано (табл.1), что вероятность появления случайной величины в интервале составляет 0,68, в интервале примерно 0,95, а в интервале вероятность появления случайной величины составляет 0,997.

 

 







Дата добавления: 2015-09-18; просмотров: 474. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия