Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оценка параметров генеральной совокупности по ее выборке. Генеральной совокупностью случайной величины называют совокупность всех значений данной величины, которая подлежит изучению





Генеральной совокупностью случайной величины называют совокупность всех значений данной величины, которая подлежит изучению. Однако в реальных условиях эксперимента невозможно изучить всю совокупность значений случайной величины – генеральную совокупность, поэтому исследования ведутся выборочно.

Часть значений случайной величины, которая отобрана для изучения, называется выборочной совокупностью или выборкой.

Отдельные значения случайной величины называются вариантами Число, указывающее сколько раз встречается данная варианта, называется частотой

Результаты серии измерений записывают в виде вариационного ряда, в котором варианты расположены в порядке возрастания или убывания с указанием частоты. Если случайная величина является непрерывной, то строят интервальный ряд: ряд разбивается на равные интервалы с указанием суммарной частоты вариант, входящих в интервал.

Затем решается вопрос, к какому виду распределения относится изучаемая выборка. Одним из методов определения закона распределения случайной величины по выборке является метод анализа гистограммы. Гистограмма – это столбчатая диаграмма (histos – столб) (рис.2). Для ее построения по оси абсцисс откладываются значения интервалов. На отрезках, соответствующих интервалам, строят прямоугольники высота которых пропорциональна суммарной частоте вариант в интервале. Соединив середины верхних сторон прямоугольников плавной линией, получают кривую эмпирического происхождения, которую сравнивают теоретическими кривыми.

 

 

Рис. 2

Все дальнейшие расчеты и рассуждения относятся к нормальному закону распределения.

При изучении выборки определяют ее параметры (числовые характеристики):

среднее арифметическое выборки (выборочную среднюю) , - дисперсию выборки и среднее квадратичное отклонение выборки

,

где n -общее число наблюдений (объем выборки), k – число вариант.

Для большей выборки при n 30 вычисление дисперсии производится по формуле:

.

Так как выборка всегда ограничена количественно, экспериментальные числовые характеристики (параметры) лишь приблизительно отражают изучаемое распределение, поэтому выборочная средняя , дисперсия и среднее квадратичное отклонение являются только оценкой среднего значения (математического ожидания) дисперсии и среднего квадратичного отклонения изучаемого распределения, т.е. генеральной совокупности.

Среднее квадратичное отклонение выборки является мерой отклонения любой варианты выборки от случайной величины.

Мерой отклонения среднего арифметического выборки от является средняя ошибка среднего арифметического . Средняя ошибка, в свою очередь, представляет собой среднее квадратичное отклонение среднего арифметического от случайной величины.

Предположим, что из единой генеральной совокупности берется I разных выборок. Для определенности будем считать их объемы одинаковыми и равными n. Их выборочные средние () являются случайными величинами, для которых можно найти закон распределения и соответствующие параметры. Оказывается, что разные распределены по нормальному закону, а их математическое ожидание равно математическому ожиданию генеральной совокупности. Это позволяет при достаточно большой выборке ее среднее значение приближенно принять за генеральную среднюю, т.е. .

Однако для дисперсий положение несколько иное. Математическое ожидание дисперсий различных выборок, составленных из генеральной совокупности, отличается от генеральной дисперсии. Поэтому для оценки генеральной дисперсии вводят исправленную выборочную дисперсию

.

Эта величина не является ни выборочной, ни генеральной дисперсией. Однако если имеется много выборок одной генеральной совокупности, среднее значение (математическое ожидание) S приближается к генеральной дисперсии. При большой выборке , что видно из предыдущей формулы.

Такого рода оценка параметров генеральной совокупности или каких-либо измерений называется точечной.

 







Дата добавления: 2015-09-18; просмотров: 1183. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия