Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

П.1.3. Вычисления с приближенными числами.





Точность результата математических операций с приближенными числами определяется количеством значащих цифр в этих числах.

Значащими цифрами числа называется число надежно установленных цифр в записи результата измерения. Так в записи 23,21 см мы имеем четыре значащих цифры, а в записи 0,062 см – две.

В процессе измерений или в ходе вычислений не следует сохранять в окончательном ответе больше знаков, чем имеется значащих цифр в наименее точно измеренной величине.

Результат любого арифметического действия с приближенными числами есть также приближенное число, в котором могут быть и неверные цифры, подлежащие отбрасыванию. Так как сложение и умножение верной цифры и неверной дает неверную, а верной и сомнительной – сомнительную, то результат вычисления, очевидно, не может быть точнее самого неточного числа в исходных данных. Отсюда ясно, что не только окончательные результаты, но и числа в промежуточных выкладках, а также исходные приближенные числа необходимо округлять. Округление надо производить следующим образом.

- при сложении и вычитании все слагаемые округляют до сомнительной цифры, стоящей в самом высшем разряде, а затем производят сложение.

Пример:

 

Рот вычитании близки по величине чисел возможно потеря относительной точности. Например, в случае разности

исходные данные имеют по 5 значащих цифр, а результат – две, причем только одну верную цифру. Увеличение точности в таких случаях возможно только путем изменения метода измерений (или вычислений) и, следовательно, использования расчетной формулы, не содержащей разности близких величин;

- при умножении и делении в полученном результате будет столько значащих цифр, сколько в исходном данном с наименьшим количеством значащих цифр. Аналогично предыдущему следует предварительно округлять все числа, оставляя, если это может повлиять на результат, одну запасную цифру.

Пример: ;

- при возведении в степень и извлечении корня приближенного числа должно быть оставлено значащих цифр столько, сколько их в основании.

Пример: .

В числе, полученном после извлечения корня любой степени, следует оставлять столько значащих цифр, сколько их было в числе под корнем.

Пример: ;

- при логарифмировании в мантиссе приближенного числа берется столько значащих цифр, сколько их в логарифмируемом числе.

Пример:

.

Вычисление погрешности измерений производят с такой же точность, что и вычисление самой измеряемой величины, а это означает, что при записи погрешности в ней будет столько же десятичных знаков, сколько их в записи самого результат. На погрешность правило значащих цифр не распространяется.

Например:

Правильно. Неправильно.

Z= 284 Z= 284,5

Z= 52,7 Z= 52.74

Z= 4,750 Z= 4,75

ОТВЕТЫ

 

 

Глава 4

 

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

 

Глава 5



 


 
 
 
 
 
   
   
   
 
 
   
 
 
 
 
 
 
 
 
 
 
  0,24
 
   
 
  0,5
  0,5
 
   
   
   
   
  10
  4,25
 
   
   
 
  » 2,33
   
 
 
 
 
 
 
 
 
 
 
 
 
 

 


Глава 6.
6.1 нет да нет да
  нет да да да
  S = -2 cos t
 
 
 
   
   
   
   
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  За 30 мин
  1 см/с
  »44%
 
 
 
 
 

СПИСОК ЛИТЕРАТУРЫ

 

Герасимов А.Н.. Медицинская статистика: учебное пособие / А.Н. Герасимов- М.: МИА, 2007.-475с.

Кучеренко В.З.. Применение методов статистического анализа для изучения общественного здоровья и здравоохранения: учебное пособие для медицинских вузов / В.З. Кучеренко. - М.: ГЭОТАР- Медиа, 2007.-245с.

Павлушков И.В. Основы высшей математики с математической статистикой: учебник для мед. и фармац. вузов / И.В.Павлушков. -изд. 2-е исправ.- М.: ГЭОТАР- Медиа, 2007.-422с.

Ремизов А.Н. Курс лекций: учебник / А.Н.Ремизов, А.Я. Потапенков - изд. 3-е..- М.: Дрофа, 2006.-720с..

Чернов В.И.. Математическая статистика с основами высшей математики: учебник / В.И. Чернов и др. - Воронеж: ГОУ «Воронеж. гос. мед. акад. им Н.Н Бурденко», 2006.-317с.

 

 

Учебное издание

Методические разработки к практическим занятиям по высшей математике и математической статистике







Дата добавления: 2015-09-18; просмотров: 509. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия