Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Элементы регрессионного анализа





После того, как установлено наличие корреляционной связи между двумя изучаемыми признаками (явлениями), можно попытаться установить закономерность зависимости одного признака , являющегося в нашем случае функцией, от другого (аргумента). Зная закономерность , можно в дальнейшем прогнозировать течение процесса, обладающего признаками и , изучать его динамику.

       
   

Чтобы получить уравнение , требуется аппроксимировать (лат. approximare – приближаться) эмпирическую линию регрессии (ЭЛР), которую получают путем соединения точек диаграммы (рис. 10) подходящей теоретической линией регрессии (ТЛР).

а б

Рис. 10

На рис.10 а) показана нелинейная связь между величинами, а на рис.10.б) – линейная.

Выше мы говорили о простейшей корреляционной связи – линейной. Поэтому все внимание обратим на рис. 10 б. Для этого случая уравнение связи следует искать в виде теоретического уравнения прямой:

.

Для того чтобы получить конкретное уравнение связи необходимо определить коэффициенты a и b. Определение коэффициентов уравнения ТЛР производится различными способами, самым точным из них является метод наименьших квадратов. Название метода происходит из основного требования замены ЭЛР на ТЛР – аппроксимация будет осуществлена наилучшим образом, если ТЛР наилучшим образом будет приближаться к ЭЛР, в этом случае сумма отклонений значений функции из уравнения ТЛР – yТ от значений функции в эксперименте – yЭ (для одного и того же значения аргумента x) будет минимальной:

.

Для устранения влияния знака разности берут квадраты:

,

но , тогда можно записать:

.

Известно, что если функция в некоторой точке имеет минимум, то производная ее в этой точке равна 0. Поэтому приравниваем нулю производные суммы по параметрам a и b. Полученную систему уравнений решаем относительно a и b. Полученные значения коэффициентов подставляем в уравнение и получаем уравнение теоретической линии регрессии, наилучшим образом описывающее закон связи коррелирующих признаков x и y.

Поиск аппроксимирующего уравнения – это искусство, которым можно овладеть, только в результате накопления большого опыта. На помощь экспериментаторам в настоящее время пришли многочисленные программы для обработки экспериментальных данных. В частности, кривую ТЛР на рис. 10 а) можно описать при помощи уравнения

Конечно, без помощи вычислительной машины и соответствующих программ найти все коэффициенты в этом уравнении довольно трудно. Но вряд ли даже исследователь будет пользоваться этим уравнением: слишком много параметров. Оказывается можно подобрать несколько кривых ТЛР (теоретической линии регрессии). При обработке экспериментальных данных исследователю помогает еще здравый смысл, представление о возможном характере взаимосвязи величин. Все это позволяет выбрать наиболее подходящее уравнение для описания полученных экспериментальных закономерностей.

Чаще при обработке эксперимента на начальном этапе исследователь ограничивается графическим проведением ТЛР с учетом метода наименьших квадратов: кривая должна быть плавной и равноотстоять от всех экспериментальных точек.

 







Дата добавления: 2015-09-18; просмотров: 423. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия