Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Элементы регрессионного анализа





После того, как установлено наличие корреляционной связи между двумя изучаемыми признаками (явлениями), можно попытаться установить закономерность зависимости одного признака , являющегося в нашем случае функцией, от другого (аргумента). Зная закономерность , можно в дальнейшем прогнозировать течение процесса, обладающего признаками и , изучать его динамику.

       
   

Чтобы получить уравнение , требуется аппроксимировать (лат. approximare – приближаться) эмпирическую линию регрессии (ЭЛР), которую получают путем соединения точек диаграммы (рис. 10) подходящей теоретической линией регрессии (ТЛР).

а б

Рис. 10

На рис.10 а) показана нелинейная связь между величинами, а на рис.10.б) – линейная.

Выше мы говорили о простейшей корреляционной связи – линейной. Поэтому все внимание обратим на рис. 10 б. Для этого случая уравнение связи следует искать в виде теоретического уравнения прямой:

.

Для того чтобы получить конкретное уравнение связи необходимо определить коэффициенты a и b. Определение коэффициентов уравнения ТЛР производится различными способами, самым точным из них является метод наименьших квадратов. Название метода происходит из основного требования замены ЭЛР на ТЛР – аппроксимация будет осуществлена наилучшим образом, если ТЛР наилучшим образом будет приближаться к ЭЛР, в этом случае сумма отклонений значений функции из уравнения ТЛР – yТ от значений функции в эксперименте – yЭ (для одного и того же значения аргумента x) будет минимальной:

.

Для устранения влияния знака разности берут квадраты:

,

но , тогда можно записать:

.

Известно, что если функция в некоторой точке имеет минимум, то производная ее в этой точке равна 0. Поэтому приравниваем нулю производные суммы по параметрам a и b. Полученную систему уравнений решаем относительно a и b. Полученные значения коэффициентов подставляем в уравнение и получаем уравнение теоретической линии регрессии, наилучшим образом описывающее закон связи коррелирующих признаков x и y.

Поиск аппроксимирующего уравнения – это искусство, которым можно овладеть, только в результате накопления большого опыта. На помощь экспериментаторам в настоящее время пришли многочисленные программы для обработки экспериментальных данных. В частности, кривую ТЛР на рис. 10 а) можно описать при помощи уравнения

Конечно, без помощи вычислительной машины и соответствующих программ найти все коэффициенты в этом уравнении довольно трудно. Но вряд ли даже исследователь будет пользоваться этим уравнением: слишком много параметров. Оказывается можно подобрать несколько кривых ТЛР (теоретической линии регрессии). При обработке экспериментальных данных исследователю помогает еще здравый смысл, представление о возможном характере взаимосвязи величин. Все это позволяет выбрать наиболее подходящее уравнение для описания полученных экспериментальных закономерностей.

Чаще при обработке эксперимента на начальном этапе исследователь ограничивается графическим проведением ТЛР с учетом метода наименьших квадратов: кривая должна быть плавной и равноотстоять от всех экспериментальных точек.

 







Дата добавления: 2015-09-18; просмотров: 423. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия