Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегрирование по частям.





С помощью формулы интегрирования по частям

где u, v –дифференцируемые функции, зависящие от х, нахождение интеграла сводится к отысканию более простого интеграла .

Например:

1). Найти интеграл

.

Положим

,

тогда

.

Отсюда

.

Используя формулу интегрирования по частям, получим

2). Найти интеграл

Полагая

найдем

Отсюда

3). Найти интеграл

.

Полагая

получим

Тогда интеграл примет вид:

 

Используя формулу интегрирования по частям, найти следующие интегралы:

   
   
   
   
   
   

 

§4. Применение неопределенного интеграла при решении прикладных задач.

Рассмотрим задачи.

1). Шкив вращается вокруг оси под действием момента сил М, который меняется с течением времени по закону М=Аt, А - известная постоянная величина. Найти угловую скорость w и угол поворота jшкива в любой момент времени, если в начальный момент шкив был неподвижен. Момент инерции шкива равен I.

Используем для решения основное уравнение динамики вращения тела

Отсюда .

Угловую скорость находим интегрированием последнего выражения, т.е.

Постоянную интегрирования С найдем из начальных условий, т.е. из условия, что при t =0, w=0. Получаем, что С =0. Таким образом, угловая скорость в любой момент времени равна

.

Учитывая, что угловая скорость и угловой путь связаны формулой

,

найдем угловой путь

,

где С- постоянная интегрирования, которая вновь определяется из начального условия: при t =0, w=0, значит С 1=0. Следовательно, угол поворота шкива в любой момент времени равен

2). Скорость тела через t с после начала движения равна V =(4 t +5) м/с. Определить путь, пройденный телом за t с после начала отсчета.

Учтя, что , получим . Тогда

.

Постоянную интегрирования найдем из начального условия, что при t =0 тело покоилось, следовательно С =0. Тогда окончательно имеем

S =2 t 2+5 t (м).

 

Решить следующие задачи.

 

4.78 Скорость тела через t с после начала движения равна V=V 0 +at ( м/с). Определить путь, пройденный телом за это время.

4.79 Скорость прямолинейного движения тела в любой момент времени t равна V= 3 t 2 + 4 t (м/с). Найти расстояние, пройденное телом в любой момент времени от начала отсчета, если через 2 с оно равно 15 м.

4.80 В любой момент времени ускорение тела а = (м/с2).Найти зависимость пройденного пути от времени движения, зная, что тело начинает двигаться из состояния покоя с начальной скоростью 3 м/с.

4.81 В любой момент времени скорость тела V= p×cosp t ( м/с). Найти закон движения тела, зная, что в момент времени t =2с пройденное от начала отсчета расстояние равно4 м.

4.82 Сила, действующая на тело в направлении движения, меняется со временем по закону F =6 t (Н). Найти скорость тела в любой момент времени, зная, что в момент начала отсчета она была равна 1 м/с. Масса тела 3 кг.

4.83 На диск действует постоянный вращающий момент силы М =2Н×м. Найти закон изменения угловой скорости и угла поворота диска с течением времени, если в начальный момент времени угловая скорость была 30 рад/с, а угол поворота равен нулю. Момент инерции диска 0,02кг×м2.

4.84 Ток в цепи, содержащей конденсатор, меняется по закону

I = Imax sinw t (А), где Imax и w- постоянные величины. Как изменяется со временем заряд конденсатора, если в момент времени, когда ток максимален, заряд равен нулю?

4.85 Скорость тела, брошенного вертикально вверх с начальной скоростью V 0, определяется по формуле V = V 0- gt (м/с). На каком расстоянии от начального положения будет находиться тело через t с после броска?

 







Дата добавления: 2015-09-18; просмотров: 580. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия