Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Механизмы с плоским толкателем





Схема такого механизма представлена на рис. 3.1д. При работе этих механизмов угол давления в кинематической паре кулачок-толкатель всегда g = 0, поэтому заклинивание в этой кинематической паре им не грозит. Критерием же определения минимально допустимого радиуса базовой окружности кулачка является требование выпуклости профиля кулачка [14, 18], так как очевидно, что при наличии вогнутостей плоский толкатель не будет их отслеживать.

Математически условие выпуклости кулачка означает, его радиус кривизны в каждой точке должен быть положителен:

r > 0

Найдем условия, при которых это будет выполняться. Расчётные схемы показаны на рис. 3.11.

Проведем нормаль n-n в точке контакта толкателя с кулачком (рис. 3.11а). Пусть точка A является центром кривизны профиля. Как видно из рисунка

 

AB = r = R O + s i + A b,

 


где RO – радиус базовой окружности кулачка, s i – перемещение толкателя в данном положении, A b – отрезок подлежащий определению.

Заменим высшую кинематическую пару кулачок-толкатель на две низших, добавив фиктивное звено AB, как это показано на рис. 3.11б. При этом получаем кулисный механизм. Построим для него план ускорений, соответствующий векторному уравнению:

 

где a B – ускорение толкателя, a B= wК S” = d2S/dt2 ,

a An = wК2 r – нормальное ускорение точки A кулачка (r = OA),

a BOt – тангенциальное ускорение относительного движения (параллельно xx).


Построенный на плане механизма треугольник OAb подобен плану ускорений с полюсом в точке A. Следовательно, беря отношения соответствующих сторон, найдем:

Откуда искомый отрезок


где j – угол поворота кулачка, S” – аналог ускорения толкателя, по своему физическому смыслу это ускорение толкателя при единичной угловой скорости кулачка.

Таким образом, радиус кривизны кулачка

r = R O + s i + S”.

И условие выпуклости кулачка:

r = R O + s i + S” ³ 0. (3.12)

Поскольку RO и s i всегда положительны, то радиус кривизны может изменить знак только в том случае, если отрицательное значение аналога ускорения S” станет по абсолютной величине больше суммы RO + s i. Беря предельный случай, получаем, что условие выпуклости будет выполнено, если

 

R O ³ – (s i + S”) = – [s i (j) + S”(j)] (3.13)

 

Эта формула показывает, что наименьший допустимый радиус базовой окружности кулачка ROmin определяется величинами перемещения толкателя s и аналога ускорения S”; решение надо искать в отрицательной зоне графика S”(j), для тех положений толкателя, в которых отрицательное значение S” по абсолютной величине больше положительных значений s.

На рис. 3.11в показана диаграмма, с помощью которой можно найти величину RO, такую, что профиль кулачка будет выпуклым. Здесь строится график функции S”(s), в одном масштабе по вертикальной оси откладывается перемещение s толкателя, а по горизонтальной – S”; это векторная величина, направление которой получают, повернув вектор скорости толкателя на 90O в сторону, противоположную вращению кулачка.

Преобразуем неравенство (3.13):

RO + s i ³ –S”

или 1 ³ S”/(R O + s i)

tg 45O ³ S”/(R O + s i)

Проведем к отрицательной ветви кривой S”(s) касательную t-t под углом 45О к оси S. Значение минимально допустимого радиуса базовой окружности кулачка определится выражением:

R o min = (S”D/tg 45o) – SD; (3.14)

где: SD, S”D – значения перемещения толкателя и аналога его ускорения, соответствующие точке D, в которой t-t касается S”(s).

На практике Ro вбирают несколько большим, чем Ro min .







Дата добавления: 2015-09-19; просмотров: 533. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2026 год . (0.008 сек.) русская версия | украинская версия