Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Механизмы с плоским толкателем





Схема такого механизма представлена на рис. 3.1д. При работе этих механизмов угол давления в кинематической паре кулачок-толкатель всегда g = 0, поэтому заклинивание в этой кинематической паре им не грозит. Критерием же определения минимально допустимого радиуса базовой окружности кулачка является требование выпуклости профиля кулачка [14, 18], так как очевидно, что при наличии вогнутостей плоский толкатель не будет их отслеживать.

Математически условие выпуклости кулачка означает, его радиус кривизны в каждой точке должен быть положителен:

r > 0

Найдем условия, при которых это будет выполняться. Расчётные схемы показаны на рис. 3.11.

Проведем нормаль n-n в точке контакта толкателя с кулачком (рис. 3.11а). Пусть точка A является центром кривизны профиля. Как видно из рисунка

 

AB = r = R O + s i + A b,

 


где RO – радиус базовой окружности кулачка, s i – перемещение толкателя в данном положении, A b – отрезок подлежащий определению.

Заменим высшую кинематическую пару кулачок-толкатель на две низших, добавив фиктивное звено AB, как это показано на рис. 3.11б. При этом получаем кулисный механизм. Построим для него план ускорений, соответствующий векторному уравнению:

 

где a B – ускорение толкателя, a B= wК S” = d2S/dt2 ,

a An = wК2 r – нормальное ускорение точки A кулачка (r = OA),

a BOt – тангенциальное ускорение относительного движения (параллельно xx).


Построенный на плане механизма треугольник OAb подобен плану ускорений с полюсом в точке A. Следовательно, беря отношения соответствующих сторон, найдем:

Откуда искомый отрезок


где j – угол поворота кулачка, S” – аналог ускорения толкателя, по своему физическому смыслу это ускорение толкателя при единичной угловой скорости кулачка.

Таким образом, радиус кривизны кулачка

r = R O + s i + S”.

И условие выпуклости кулачка:

r = R O + s i + S” ³ 0. (3.12)

Поскольку RO и s i всегда положительны, то радиус кривизны может изменить знак только в том случае, если отрицательное значение аналога ускорения S” станет по абсолютной величине больше суммы RO + s i. Беря предельный случай, получаем, что условие выпуклости будет выполнено, если

 

R O ³ – (s i + S”) = – [s i (j) + S”(j)] (3.13)

 

Эта формула показывает, что наименьший допустимый радиус базовой окружности кулачка ROmin определяется величинами перемещения толкателя s и аналога ускорения S”; решение надо искать в отрицательной зоне графика S”(j), для тех положений толкателя, в которых отрицательное значение S” по абсолютной величине больше положительных значений s.

На рис. 3.11в показана диаграмма, с помощью которой можно найти величину RO, такую, что профиль кулачка будет выпуклым. Здесь строится график функции S”(s), в одном масштабе по вертикальной оси откладывается перемещение s толкателя, а по горизонтальной – S”; это векторная величина, направление которой получают, повернув вектор скорости толкателя на 90O в сторону, противоположную вращению кулачка.

Преобразуем неравенство (3.13):

RO + s i ³ –S”

или 1 ³ S”/(R O + s i)

tg 45O ³ S”/(R O + s i)

Проведем к отрицательной ветви кривой S”(s) касательную t-t под углом 45О к оси S. Значение минимально допустимого радиуса базовой окружности кулачка определится выражением:

R o min = (S”D/tg 45o) – SD; (3.14)

где: SD, S”D – значения перемещения толкателя и аналога его ускорения, соответствующие точке D, в которой t-t касается S”(s).

На практике Ro вбирают несколько большим, чем Ro min .







Дата добавления: 2015-09-19; просмотров: 533. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия