Студопедия — Теория метода и описание установки. Для описания вращательного движения твёрдого тела используют кинематические и динамические характеристики
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теория метода и описание установки. Для описания вращательного движения твёрдого тела используют кинематические и динамические характеристики






Для описания вращательного движения твёрдого тела используют кинематические и динамические характеристики, перечисленные в табл. 2.1.

Таблица 2.1

Кинематические характеристики Динамические характеристики
j(t) – угловая координата, Dj – угловой путь, угол поворота; – угловое перемещение; – угловая скорость; – угловое ускорение I – момент инерции, кгм2; для материальной точки I = mr 2; для твёрдого тела ; – момент силы; М = F×l – модуль момента силы, Нм; – момент импульса, кгм2

В табл. 2.1 m – масса; dm­ – бесконечно малый элемент массы; r – расстояние от оси вращения; – радиус-вектор точки приложения силы; – сила; F – модуль силы; l – плечо силы; – импульс материальной точки.

Динамические характеристики имеют следующий физический смысл:

I – мера инертности при вращательном движении (аналог массы);

– мера действия при вращательном движении (аналог силы);

– мера количества движения при вращении (аналог импульса тела).

Все векторы, характеризующие вращательное движение, направлены по оси вращения в соответствии с «правилом буравчика».

Линейная скорость точки, находящейся на расстоянии r от оси вращения (точнее – модуль скорости )

u = w r. (2.1)

Тангенциальное ускорение

а t= e r. (2.2)

Нормальное ускорение

an = w2 r. (2.3)

Основной закон динамики вращательного движения тела (аналог II закона Ньютона)

, (2.4)

где – сумма моментов сил, действующих на тело. Для тела с постоянным моментом инерции

. (2.5)

Маятник Обербека, с помощью которого исследуется зависимость между величинами, входящими в выражение основного закона динамики вращательного движения, представляет собой крестовину (рис. 2.1), вращающуюся вокруг горизонтальной оси. На шкив крестовины наматывается нить, к концу которой прикреплён груз массой m.

При опускании груза сила натяжения нити приводит во вращение крестовину. На стержнях крестовины с помощью винтов на равных расстояниях от оси вращения укрепляют четыре одинаковых груза, размеры которых малы по сравнению с их расстоянием от оси вращения.

Во время движениякрестовина вращается под действием момента силы натяжения нити . Модуль момента силы натяжения

M н= TR, (2.6)

где R – плечо силы , равное радиусу шкива, на который намотана нить.

В рассматриваемом случае на крестовину действует не только сила натяжения нити, но и различные силы трения-сопротивления. Поэтому основной закон динамики вращательного движения (2.5) должен включать в себя и момент сил трения, т.е.

. (2.7)

Величину вращающего момента легко найти, зная силу натяжения нити и радиус шкива, на который наматывается нить. Из второго закона Ньютона для груза m, опускающегося с ускорением а (см. рис. 2.1), и из выражения (2.6) получаем

M н = mR (g – a). (2.8)

Ускорение a груза одновременно является тангенциальным ускорением at точек вращающегося шкива, поэтому угловое ускорение крестовины

. (2.9)

Ускорение груза и, следовательно, угловое ускорение можно найти экспериментально. Но в уравнении движения (2.7) остаются две неизвестные величины: момент сил трения M три момент инерции крестовины I, так что однозначное решение его при неизменном значении массы груза m невозможно. Однако графически найти и момент инерции, и момент сил трения нетрудно. Для этого следует записать уравнение (2.7) в проекции на ось вращения и привести к известному виду линейной функции y = c + bx. По графику этой функции легко найти постоянные c и b. В нашем случае это будет уравнение

M н = M тр + I e. (2.10)

Проведя измерения с разными массами и построив по данным измерений график зависимости M нот e, можно найти по нему обе искомые величины: момент инерции I и обобщённый момент сил сопротивления движению M тр. Подумайте, как это сделать!

 







Дата добавления: 2015-08-12; просмотров: 620. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия