Квантові теорії теплоємності твердих тіл.
Квантову теорію теплоємності твердих тіл уперше розвинув , (3.20) де – частота коливань осцилятора. Один моль кристалічної речовини містить атомів-осциляторів, кожен з яких має три ступені вільності. Тоді внутрішня енергія одного моля речовини , (3.21) де – внутрішня енергія за температури Т =0 К. Зробимо заміну і продиференціюємо (3.21) за температурою. Отримаємо . (3.22) Величину , яка має розмірність температури, називають температурою Айнштайна, а вираз (3.22) – формулою Айнштайна. На підставі виразу (3.22) можна показати, що при <<1 і , тобто за високих температур теплоємність твердих тіл відповідає закону Дюлонга і Пті. За низьких температур ( >>1) , тоді , що також узгоджується з експериментом. Водночас теорія Айнштайна не дала змоги пояснити температурну залежність теплоємності твердих тіл за низьких температур і аномально низької теплоємності бору, алмазу та ін. Пояснення цих розбіжностей дає квантова теорія теплоємності Дебая, який, на відміну від Айнштайна, врахував, що коливання атомів кристалічної гратки не є незалежними. П. Дебай довів, що головний внесок у середню енергію квантового осцилятора роблять коливання з низькими частотами, утворюючи в кристалі пружні хвилі. Згідно з квантово-механічними уявленнями, такій хвилі можна поставити у відповідність деяку частинку – фонон з енергією . Фонон з енергією hν; є квантом енергії пружної хвилі або елементарним збудженням ґратки, яка поводиться як квазічастинка. У теорії Дебая енергію теплового збудження кристала розглядають як енергію фононного газу, описуваного статистикою Бозе–Айнштайна. Максимальну енергію кванта збудження ґратки можна виразити через – температуру Дебая: . (3.23) За Дебаєм, теплові коливання окремих атомів потрібно розглядати як пружні коливання всієї ґратки у доволі широкому діапазоні частот. На підставі наведених вище тверджень Дебай отримав такий вираз для молярної теплоємності твердих тіл: , (3.24) де . Аналіз виразу (3.24) засвідчує, що за умови Т>> , СV ≈3 R, а за умови Т << , , (3.25) де . Рівняння (3.25) називають законом кубів Дебая. Зазначимо, що температура Дебая розділяє температурні інтервали, де справджуються класична (Т > ) чи квантова (Т < ) теорії. Для алмазу, берилію, кремнію і бору – значно більша від кімнатної температури (наприклад, алмазу дорівнює 1 850 К), тому для них за нормальних умов і простежується відхилення від закону Дюлонга і Пті. Розглянемо тепер теплоємність металів і діелектриків. З погляду класичної теорії їхні теплоємності мають бути різними, оскільки в металах до ґраткової теплоємності повинна додаватись ще й теплоємність електронного газу. Зокрема, кожен атом у вузлі кристалічної ґратки можна вважати тривимірним осцилятором з енергією . (3.26) Тоді внутрішня енергія одного моля , (3.27) звідки ґраткова молярна теплоємність (3.28) Якщо ж у міжвузлях ґратки є електронний газ (метали), то його теплоємність становить . Отже, за невисоких температур для металів а для діелектриків , що суперечить експерименту. Цю суперечність можна усунути, якщо до електронного газу застосувати квантову теорію, яка поширюється і на електронний газ у металах. Зокрема, газ вільних електронів у металах, на відміну від фононного газу, описує статистика Фермі–Дірака, згідно з якою за температури Т ¹0 К лише незначна частина електронів змінює енергію і переходить у стани з енергіями понад ЕF (рис. 3.4). Для металів ЕF =3-7 еВ, тоді як Е = kТ =0,02–0,2еВ (для реальних температур, коли метал ще перебуває у твердому стані). Отже, Е << ЕF, тому зі зміною температури функція розподілу змінюється незначно. На підставі цих міркувань можна зробити висновок, що теплоємність газу вільних електронів у металах є дуже малою, тому молярна теплоємність металу відповідає теплоємності ґратки Точніший розрахунок електронної теплоємності засвідчує, що , (3.29) де ТF – це температура виродження електронного газу. Для більшості металів ТF ~104 К, тому за кімнатної температури і , отже,
|