Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Распределение Больцмана. Вернемся к физике — к молекулярно-кинетической теории





 

Вернемся к физике — к молекулярно-кинетической теории. В статистической физике есть свой главный закон, закон-«генерал». Этот закон был сформулирован Людвигом Больцманом в конце XIX в. и называется распределением Больцмана. Часто этот закон называют также принципом Больцмана.

Больцман знал, что к молекулярной физике нужно применить методы теории вероятностей. С другой стороны, он был физиком и понимал, что главной характеристикой любого состояния молекул, множества, ансамбля молекул должна являться их энергия. Как известно (см. гл. 1), естественной мерой энергии молекулярного движения — внутренней энергии — является температураТ. Безразмерной характеристикой любого состояния всех молекул (частиц), сразу ясно, будет тогда величина W /(kT) где k — уже знакомая нам величина k = 1,4 ⋅ 10–23Дж/К — постоянная Больцмана.

Главное достижение Больцмана заключалось в том, что он понял: чем меньше энергия, тем число состояний с такой энергией больше. Вероятность, что ансамбль молекул имеет какую-то энергию, тем меньше, чем эта энергия больше. Теория же вероятностей подсказала ему, что степень этого уменьшения определяется экспоненциальным законом. По принципу (распределению) Больцмана число состояний с энергией W, а потому и вероятность реализации такого состояния пропорциональна:

(3.19)

Например, концентрация всегда равна

(3.20)

В такой зависимости счастливо сочетаются свойства, во-первых, свойство энергии — то, что энергия вычисляется как сумма отдельных частиц, отдельных видов (потенциальная и кинетическая энергия, например) и отдельных взаимодействий (гравитационный и электрический, например), и, во-вторых, свойство экспоненты, которая есть произведение экспонент с отдельными слагаемыми энергии в показателе каждого сомножителя. Поэтому в показатель экспоненты можно выделить исследуемую зависимость, а все остальное считать заключенным в коэффициенте пропорциональности — каждый раз разном. Проиллюстрируем эти «туманные» рассуждения на примерах.

3.4.1. Распределения молекул
под действием силы тяжести

Энергия взаимодействия молекулы с полем притяжения Земли W = m 0 gh.

Поэтому распределения молекул в атмосфере под действием силы тяжести в соответствии с принципом Больцмана запишется как:

(3.21)

В начальную концентрацию, концентрацию п 0, на поверхности Земли (на «уровне моря») отнесены все другие факторы, возможно, влияющие на молекулы. Эта формула часто называется барометрической. Она связала высоту h над некоторым нулевым уровнем и давление, которое при постоянной температуре прямо пропорционально концентрации. Переходя к молярной массе М / R = т 0/ k, получим

(3.22)

График распределения молекул в атмосфере под действием силы тяжести, построенный в соответствии с принципом Больцмана, представлен на рис. 3.8.

Рис. 3.8. Распределение молекул в атмосфере под действием силы тяжести. Представлена зависимость концентрации n от высоты над уровнем Земли h







Дата добавления: 2015-08-12; просмотров: 688. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия