Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Физической статистики: вероятность, плотность вероятности, условие нормировки вероятности





 

Большинство событий в системе многих частиц (молекулярной системе) являются случайными. Закономерности, связанные со случайными величинами, изучаются теорией вероятности и математической статистикой. В теории вероятности [1,4] основным определением является частотное определение вероятности Р случайного события А:

(1.1)

где Ni – количество случаев, в которых наблюдается интересующий результат, N – общее число всех возможных случаев. Вероятность достоверного события (Ni = N) равна единице. Вероятность невозможного события равна нулю.

В статистической физике вероятностью макроскопического состояния a системы называется величина Рa [3,4]:

(1.2)

где Г0 – общее число микросостояний, доступных для системы, Гa - число микросостояний, приводящих к данному макросостоянию a. Гa называют термодинамической вероятностью макроскопического состояния. Величины Г0 и Гa в ряде задач могут быть вычислены с помощью методов комбинаторики. Подробный вывод основных формул элементарной комбинаторики приведен в [3].

 

 

Основные формулы элементарной комбинаторики

Число способов размещения m различных предметов по n местам:

(1.3)

Число способов размещения n различных предметов по n местам (число перестановок):

Г2=n! (1.4)

Число способов размещения m неразличимых предметов по n местам:

. (1.5)

Число способов, которыми можно выбрать m различных предметов из n различных предметов, называется числом сочетаний и определяется выражением

(1.6)

Непрерывное распределение вероятности. Плотность вероятности. Условие нормировки вероятности

Если состояние физической системы характеризуется параметром j, случайно принимающим любые значения от j0 до j1, то определение вероятности (1.1) лишено смысла, поскольку множество значений параметра не является счетным. В этом случае вероятность определяется в дифференциальной форме:

(1.7)

Утверждается, что dP(j) пропорциональна величине достаточно малого интервала изменений переменной dj, а коэффициент пропорциональности f(j) не зависит от величины этого интервала и называется плотностью вероятности [1,5]:

 

(1.8)

Знание плотности вероятности позволяет найти вероятность для любой области, в которой определена плотность.

Рис.1

 

На рис.1

 
 

представлен пример графического изображения плотности вероятности. Площадь заштрихованной полоски на рисунке равна вероятности dP(j) нахождения величины j в интервале [j; j+dj]. Площадь под всей кривой f(j) есть вероятность нахождения величины j в интервале [j0;j1], которая всегда постоянна, равна 1 или 100% и определяет условие нормировки плотности вероятности.

(1.9)

Часто условие нормировки записывают для интервала значений j [0, ∞) или (-∞, +∞), полагая, что за пределами конечного интервала [j0,,j1] плотность вероятности равна нулю.

Условие нормировки вероятности дискретно изменяющейся переменной j, которая может принимать n различных значений ji с соответствующей вероятностью Pi, записывается так:

(1.10)

Выражения (1.9) и (1.10) являются следствием теоремы сложения вероятностей для несовместных событий [1,4].

 

Условие нормировки есть математическая запись утверждения, что если физическая система существует, то она находится в каком-либо из доступных ей состояний, характеризующихся параметром j. Это событие является достоверным и его вероятность равна единице.







Дата добавления: 2015-08-12; просмотров: 1945. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия