Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Семинар 4. Распределение Гиббса





Одной из важных проблем молекулярной физики является распределение энергии eо между различными частями изолированной системы. Совокупность незамкнутых систем, имеющих возможность обмениваться энергией только между собой, называется каноническим ансамблем. На вопрос, какова вероятность того, что система имеет некоторую энергию , при условии что ea<<eо, отвечает распределение Гиббса, или каноническое распределение:

(4.1)

где А – нормировочная константа, ga – число микросостояний системы с энергией (кратность вырождения), - параметр, определяющий термодинамическую температуру:

, (4.2)

где – число доступных состояний канонического ансамбля, посредством которых осуществляется состояние с нулевой энергией у рассматриваемой системы. Формула (4.2) дает первичное статистическое определение температуры. В случае непрерывного распределения энергии вероятность того, что система находится в состоянии с энергией в интервале между и равна

(4.3)

где dg=p () d – число микросостояний, лежащих в интервале энергий между и . Величина

(4.4)

называется плотностью состояний системы в интервале [ ; ].

Статистической суммой называется величина Z:

(4.5)

В случае непрерывного распределения энергии:

(4.6)

здесь интегрирование ведется по всей области определения энергии системы.

Учитывая условие нормировки, получаем

(4.7)

 

С помощью статистической суммы Z можно формализовать вычисление среднего значения энергии и ее дисперсии:

(4.8)


(4.9)

 







Дата добавления: 2015-08-12; просмотров: 443. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия