Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Семинар 3. Биномиальное распределение





Если случайное событие имеет только два исхода, причем вероятность реализации p одного из исходов в единичном испытании постоянна, то распределение вероятностей называется биномиальным. Условие нормировки в этом случае отражает альтернативный характер исхода: p + q = 1, где q – вероятность того, что событие не произошло. Биномиальное распределение отвечает на вопрос: какова вероятность реализации m определенных исходов в n независимых испытаниях при известном значении p? В статистике этот вопрос часто формулируется так: Какова вероятность обнаружить у m объектов (частиц) из n определенный признак?

Биномиальное распределение справедливо для описания случайных событий, имеющих две возможности исхода, в различных областях повседневной жизни, медицине, науке:

производстве и имеет следующее математическое выражение:

, (3.1)

где – число способов, которыми можно выбрать m различных предметов из n различных предметов (число сочетаний).

Для расчета среднего значения m и дисперсии необходимо вычислить <mk>;, где k = 1, 2 согласно (2.3). В силу трудоемкости вычислений подобного рода, процедура суммирования заменяется эквивалентной по результату, но более простой по форме дифференциальной процедурой:

. (3.2)

Существуют два важнейших предельных случая биномиального распределения.

Распределение Гаусса (другое его название - нормальное распределение). При и p = const, распределение плотности вероятности имеет вид

. (3.3)

В этом предельном случае m является непрерывно изменяющейся величиной (ámñ;>>1). Примерами нормального распределения являются: закон ошибок в метрологии, распределение попаданий в мишень (прицельная стрельба), распределение молекул по компонентам скорости в состоянии теплового равновесия.

Распределение Пуассона (закон редких событий).

При и np = const (p<<1)

(3.4)

Распределение Пуассона описывает вероятности редких событий, когда невелико по сравнению с 1. Такими событиями могут быть технические катастрофы, биологические мутации, молекулярное истечение - эффузия, вылет частиц при радиоактивном распаде ядра. Расчет флуктуаций в этом предельном случае упрощается:

. (3.5)







Дата добавления: 2015-08-12; просмотров: 392. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия