Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Риск и доходность портфельных инвестиций





 

Существуют различные определения понятия «риск». Так, в наи­более общем виде под риском понимают вероятность возникновения убытков или недополучения доходов по сравнению с прогнозируемым вариантом. В приложении к финансовым активам используют следую­щую интерпретацию риска и его меры: рисковость актива характери­зуется степенью вариабельности дохода, который может быть получен благодаря владению данным активом. Так, государственные ценные бумаги обладают небольшим риском, поскольку вариация дохода по ним в стабильной, не подверженной кризисом экономике практически равна нулю. Напротив, обыкновенная акция любой компании представ­ляет собой значительно более рисковый актив, поскольку доход по та­ким акциям может ощутимо варьировать.

Активы, с которыми ассоциируется относительно больший раз­мер возможных потерь, рассматриваются как более рисковые; вполне естественно, что к таким активам предъявляются и большие требова­ния в отношении доходности.

Количественно риск может быть охарактеризован как некий по­казатель, измеряющий вариабельность дохода. Для этой цели можно использовать размах вариации, дисперсию, среднее квадратическое от­клонение, коэффициент вариации.

Рассмотрим акции двух компаний А и Б. Пусть в следующем году могут случиться такие события:

 

Событие Вероят­ность Ожидаемые став­ки дохода для компании А, % Ожидаемые став­ки дохода для компании Б, %
Бум 0,3    
Стабильное равновесие 0,5    
Кризис 0,2 -60  

Рассчитаем среднюю ставку доходности для каждой компании по формуле:

Средняя ставка доходности составит:

Для компании А:

R срА = 0,3*0,8+0,5*0,16+0,2*(-0,6) = 0,2=20%

Для компании Б:

R срБ =0,3*0,25+0,5*0,15+0,2*0,1=0,17=17%

Найдем степень разбросанности доходов каждой компании около среднего значения Rср. Для этого вычислим среднее квадратическое отклонение по формуле:

Заполним таблицу:

Ri -RсрА (Ri -RсрА)2 (Ri -RсрА)2 i Ri -RсрБ (Ri -RсрБ)2 (Ri -RсрБ)2 i
          19,2
-4     -2    
-80     -7   9,8
    σ 2 А=2368     σ 2 Б=31

Итак, для компании А среднее квадратическое отклонение σ А=48,6, для компании Б - σ Б -5,57. Акции компании А более рискованные, так как σ А > σ Б.

Рассчитаем для каждой компании коэффициент вариации: Сv = σ / Rср

Для компании А – Сv=48.66/20=2.433

Для компании Б Сv=5,57/17=0,328

 

Составим отношение:

Сva /Cvб=2,433/0,328=7,42.

 

Акции компании А в 7,42 раза рискованнее акций компании Б.

Пусть имеется портфель облигаций, каждая бумага имеет в порт­феле свой вес W i и свою ставку дохода Ri. Оценим ожидаемую ставку доходности как средневзвешенную всех ставок доходности бумаг, име­ющихся в портфеле:

 

Рассмотрим портфель, который состоит из четырех видов ценных бумаг, равных по занимаемому объему, и ставки доходности для них следующие, %: 14; 35; 20; 18. Тогда ожидаемая доходность портфе­ля— Rср = 21,75%.

Предположим, что бумаги не скоррелированы (слабо зависят друг от друга, т. е. коэффициент корреляции стремится к нулю). Найдем дис­персию для всего портфеля:

 

Мера риска по всему портфелю:

_________________

σ = √∑ wi 2 * σ I 2

 

Рассмотрим частный случай, когда бумаги в портфеле занимают одинаковый объем. В этом случае вес одной бумаги в портфеле — wi =1/n, следовательно:

 

 

Выберем из всех σi, максимальное, тогда среднее квадратическое отклонение дохода по всему портфелю:

 

т. е. получим формулу для оценки рискованности портфеля. Если ко­личество бумаг достаточно велико, то рискованность портфеля стре­мится к нулю.

Вывод: чем больше ценных бумаг в портфеле большого числа эми­тентов, тем меньшей рискованностью обладает портфель.

 

 







Дата добавления: 2015-08-12; просмотров: 751. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия