Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Обработка и преобразование данных





В принятом примере ТОУ в результате проведенного эксперимента был получен массив данных, состоящий из 1000 значений входного параметра – электрической мощности нагревателей в кВт и 1000 значений выходного параметра – температуры в объекте в градусах Цельсия. Интервал дискретизации (промежутки времени, через которые производились измерения входных и выходных величин) в ходе эксперимента был принят равным 0.1 с. Этот массив данных при использовании в дальнейшем в пакете System Identification Toolbox необходимо объединить в единый файл, содержащий необходимую информацию о входных и выходных параметрах объекта, их значениях и размерностях измерения. Для этого загрузим в рабочую область MATLAB исходные данные для составления файла данных с помощью команды:

>> load datta

В результате выполнения команды в рабочей области появились массив входных переменных u и массив выходного параметра y. Интервал дискретизации указывается дополнительно:

>> ts=0.1;

Для объединения исходных данных в единый файл пользуются командой:

>> dan=iddata(y,u,ts)

Результат выполнения команды комментируется следующей фразой MATLAB:

Time domain data set with 1000 samples.

Sampling interval: 0.1

 

Outputs Unit (if specified)

y1

 

Inputs Unit (if specified)

u1

Сформированный файл указывает, что он содержит результаты 1000 измерений с интервалом дискретизации 0.1 с. Входными переменными является массив u 1, а выходным параметром – y 1.

Для наглядности сформированного файла необходимо в его структуру ввести обозначения входных и выходных данных:

>> set(dan,'InputName','Мощноcть','OutputName','Температура');

Данная команда эквивалентна командам:

>> dan.outputn = 'Температура';

>> dan.inputn = 'Мощноcть';

Для указания размерностей параметров файла данных необходимо воспользоваться командами:

>> dan.inputUnit = 'кВт';

>> dan.outputUnit = 'град Ц';

В конечном итоге сформированный файл данных dan.m имеет следующий вид:

 

Time domain data set with 1000 samples.

Sampling interval: 0.1

 

Outputs Unit (if specified)

Температура град Ц

 

Inputs Unit (if specified)

Мощноcть кВт

 

Полную информацию о файле dan.m можно получить воспользовавшись командой:

 

>> get (dan);

 

ans =

 

Domain: 'Time'

Name: []

OutputData: [1000x1 double]

y: 'Same as OutputData'

OutputName: {'Температура'}

OutputUnit: {'град Ц'}

InputData: [1000x1 double]

u: 'Same as InputData'

InputName: {'Мощноcть'}

InputUnit: {'кВт'}

Period: Inf

InterSample: 'zoh'

Ts: 0.1000

Tstart: []

SamplingInstants: [1000x0 double]

TimeUnit: ''

 

ExperimentName: 'Exp1'

Notes: []

UserData: []

 

 

Для графического представления данных можно воспользоваться командой plot (dan), либо командой idplot (datta), однако в последнем случае графики не будут содержать информации о названии переменных и их размерностях. Исходные данные с использование команды plot (dan) приведены на рис. 4.1.

 

 
 

 
б)
Рис. 4.1. Исходные данные для идентификации ТОУ:

а) во всем временном интервале; б) на интервале времени от 0 до 10 с.

 

Для дальнейшего использования полученных исходных данных необходимо провести предварительную обработку этих данных с цель удаления тренда из набора данных и если необходимо отфильтровать данные с помощью имеющихся средств в пакете System Identification Toolbox.

Для удаления тренда пользуются функцией:

>> zdan = dtrend (dan);

В результате этого получен новый файл zdan.m, в котором отсутствует постоянная составляющая сигналов. Этот файл в дальнейшем будет нами использован для построения моделей ТОУ. Кроме указанной команды удаления тренда в пакете System Identification Toolbox имеются другие функции обработки данных эксперимента, которые приведены в описании пакета System Identification Toolbox.

Применение этих функций производится в тех случаях, когда проведен предварительный анализ ТОУ и определены возможные помехи либо некоторые другие динамические характеристики, либо появляется необходимость изменить интервал дискретизации в случае повышенной погрешности представления модели ТОУ в ходе параметрического оценивания его.

Следующим этапом идентификации является непараметрическое оценивание исходных данных.

 







Дата добавления: 2015-08-12; просмотров: 585. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия