Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Обработка и преобразование данных





В принятом примере ТОУ в результате проведенного эксперимента был получен массив данных, состоящий из 1000 значений входного параметра – электрической мощности нагревателей в кВт и 1000 значений выходного параметра – температуры в объекте в градусах Цельсия. Интервал дискретизации (промежутки времени, через которые производились измерения входных и выходных величин) в ходе эксперимента был принят равным 0.1 с. Этот массив данных при использовании в дальнейшем в пакете System Identification Toolbox необходимо объединить в единый файл, содержащий необходимую информацию о входных и выходных параметрах объекта, их значениях и размерностях измерения. Для этого загрузим в рабочую область MATLAB исходные данные для составления файла данных с помощью команды:

>> load datta

В результате выполнения команды в рабочей области появились массив входных переменных u и массив выходного параметра y. Интервал дискретизации указывается дополнительно:

>> ts=0.1;

Для объединения исходных данных в единый файл пользуются командой:

>> dan=iddata(y,u,ts)

Результат выполнения команды комментируется следующей фразой MATLAB:

Time domain data set with 1000 samples.

Sampling interval: 0.1

 

Outputs Unit (if specified)

y1

 

Inputs Unit (if specified)

u1

Сформированный файл указывает, что он содержит результаты 1000 измерений с интервалом дискретизации 0.1 с. Входными переменными является массив u 1, а выходным параметром – y 1.

Для наглядности сформированного файла необходимо в его структуру ввести обозначения входных и выходных данных:

>> set(dan,'InputName','Мощноcть','OutputName','Температура');

Данная команда эквивалентна командам:

>> dan.outputn = 'Температура';

>> dan.inputn = 'Мощноcть';

Для указания размерностей параметров файла данных необходимо воспользоваться командами:

>> dan.inputUnit = 'кВт';

>> dan.outputUnit = 'град Ц';

В конечном итоге сформированный файл данных dan.m имеет следующий вид:

 

Time domain data set with 1000 samples.

Sampling interval: 0.1

 

Outputs Unit (if specified)

Температура град Ц

 

Inputs Unit (if specified)

Мощноcть кВт

 

Полную информацию о файле dan.m можно получить воспользовавшись командой:

 

>> get (dan);

 

ans =

 

Domain: 'Time'

Name: []

OutputData: [1000x1 double]

y: 'Same as OutputData'

OutputName: {'Температура'}

OutputUnit: {'град Ц'}

InputData: [1000x1 double]

u: 'Same as InputData'

InputName: {'Мощноcть'}

InputUnit: {'кВт'}

Period: Inf

InterSample: 'zoh'

Ts: 0.1000

Tstart: []

SamplingInstants: [1000x0 double]

TimeUnit: ''

 

ExperimentName: 'Exp1'

Notes: []

UserData: []

 

 

Для графического представления данных можно воспользоваться командой plot (dan), либо командой idplot (datta), однако в последнем случае графики не будут содержать информации о названии переменных и их размерностях. Исходные данные с использование команды plot (dan) приведены на рис. 4.1.

 

 
 

 
б)
Рис. 4.1. Исходные данные для идентификации ТОУ:

а) во всем временном интервале; б) на интервале времени от 0 до 10 с.

 

Для дальнейшего использования полученных исходных данных необходимо провести предварительную обработку этих данных с цель удаления тренда из набора данных и если необходимо отфильтровать данные с помощью имеющихся средств в пакете System Identification Toolbox.

Для удаления тренда пользуются функцией:

>> zdan = dtrend (dan);

В результате этого получен новый файл zdan.m, в котором отсутствует постоянная составляющая сигналов. Этот файл в дальнейшем будет нами использован для построения моделей ТОУ. Кроме указанной команды удаления тренда в пакете System Identification Toolbox имеются другие функции обработки данных эксперимента, которые приведены в описании пакета System Identification Toolbox.

Применение этих функций производится в тех случаях, когда проведен предварительный анализ ТОУ и определены возможные помехи либо некоторые другие динамические характеристики, либо появляется необходимость изменить интервал дискретизации в случае повышенной погрешности представления модели ТОУ в ходе параметрического оценивания его.

Следующим этапом идентификации является непараметрическое оценивание исходных данных.

 







Дата добавления: 2015-08-12; просмотров: 585. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия