Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Характеристики нагрузки





Узлом нагрузки называется совокупность потребителей электроэнергии, подключенных к центру питания, под которым понимаются шины источника (станции, подстанции) различного напряжения 0,4; 6; 10 кВ и т. д.

Для выполнения расчетов устойчивости узлов нагрузки необходимо знать их характеристики.

В узлах нагрузки сосредоточены различные потребители: освещение, двигатели, обогрев, преобразователи и пр. Всю нагрузку можно разделить на двигательную и статическую. У двигательной нагрузки могут возникать проблемы с устойчивостью работы, у статической нагрузки таких проблем нет. Однако статическая нагрузка оказывает влияние на переходные процессы и знание её характеристик также необходимо.

Различают статические и динамические характеристики нагрузки. Статические характеристики – это зависимости, проявляющиеся в установившихся режимах, при медленных изменениях режима. Динамические характеристики проявляются в переходных процессах при быстрых изменениях параметров режима.

Для расчетов режимов и устойчивости электрических систем обычно используют статические характеристики нагрузки, под которыми понимают зависимости активной и реактивной мощностей нагрузки от напряжения и частоты питающей сети:

P н =F (U, f); Q н =F (U, f).

Статические характеристики узла нагрузки можно получить расчетным или экспе­риментальным путем. Трудность определения характеристик расчетным путем состоит в получении достоверных исходных данных.

При экспериментальном определении характеристик в узле нагрузки должны изме­няться напряжение и частота. Значения Р и Q при этом фиксируются с помощью приборов через минуту после каждого изменения параметров режима. Понятно, что подоб­ного рода эксперименты в реальных условиях проводить достаточно сложно.

Статическая характеристика активной мощности асинхронного двигателя описывается выражением (2.9), статическая характеристика реактивной мощности асинхронного двигателя – выражением (2.11).

Изменение характеристик при «опрокидывании» асинхронного двигателя показано на рис. 2.13.

Статическая характеристика активной мощности синхронного двигателя описывается выражением

Р = .

Статическая характеристика реактивной мощности синхронного двигателя описывается выражением

.

Изменение характеристик при «опрокидывании» синхронного двигателя показано на рис.2.14.

Из рис. 2.14 видно, что активная мощность синхронного двигателя держится постоянной до тех пор, пока двигатель при снижении напряжения не выпадет из синхронизма. Этот момент наступает, когда максимальная мощность двигателя становится равной механической Р мах = Р о (напряжение при этом называют критическим). После выпадения двигателя из синхронизма его актив­ная мощность падает.

 

Рис. 2.14. Изменения активной и реактивной мощностей синхронного

двигателя при изменении напряжения на его зажимах

 

Синхронный двигатель, работая в нормальном режиме, обычно выдает реактивную мощность в сеть. При снижении напряжения выдача мощности сначала увеличивается, но затем начинает уменьшаться, проходит через нуль (рис. 2.14), и двига­тель, выпав из синхронизма, потребляет реактивную мощность из сети.

Характеристики различных статических нагрузок приведены на рис. 2.15.

 

а) б)

Рис. 2.15. Характеристики ламп накаливания ЛН, конденсаторных батарей КБ,реакторов Р по напряжению (а) и частоте (б)

 

Поскольку в узел нагрузки входят различные электроприёмники, в расчетах используют характеристики комплексной нагрузки. Такие интегральные ха­рактеристики комплексной нагрузки показаны на рис. 2.16.

Рис. 2.16. Статические характеристики комплексной нагрузки по напряжению

Интересно то, что зависимость Q = f(U) напоминает ту же кривую для асинхронного двигателя. Это обстоятельство свидетельствует о том, что в составе комплексной на­грузки преобладает асинхронная нагрузка.

Изменения мощности, потребляемой нагрузкой, при малых изменениях напряжения и частоты могут быть представлены уравнениями в приращениях:

Величины производных , , , называют регулирующими эффектами нагрузки по напряжению и частоте. Они характеризуют наклон характеристик нагрузки в заданной точке режима.

Регулирующие эффекты нагрузки при медленных изменениях напряжения и частоты вблизи их номинальных значений составляют (в относительных единицах):

Накопленные знания об электрических нагрузках позволяют составить их математи­ческое описание. Как оказывается (если считать частоту сети постоянной), нагрузки мо­гут быть представлены тремя способами:

- постоянством мощности S h = Рн + jQ h = сonst (рис.2.17, а);

- постоянством сопротивления Z н =R н + jX н = соnst (рис. 2.17, б);

- естественными статическими характеристиками (рис. 2.17, в).

Если нагрузки заданы номинальными мощностями Р ном, Q ном при номи­нальном напряжении U ном, то сопротивление нагрузки может быть вычислено по формулам

или

Рис. 2.17. Статические характеристики комплексной нагрузки при ее представлении:

а – посто­янством мощности, б – постоянством сопротивления,

в – естественными характеристиками

 

Очевидно, что последний способ представления нагрузок дает наиболее достоверные результаты расчетов, так как эти характеристики получены без всяких допущений и отражают свойственную нагрузке реакцию на изменение напря­жения.

 







Дата добавления: 2015-08-12; просмотров: 10167. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия