Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства неопределенного интеграла





 

1. Неопределенный интеграл от суммы конечного числа непрерывных функций равен сумме неопределенных интегра­лов от слагаемых функций, то есть

2. Отличный от нуля постоянный множитель можно вы­носить за знак неопределенного интеграла, то есть

 

3. Дифференциал неопределенного интеграла равен подынтегральному выражению, то есть

4. Неопределенный интеграл от дифференциала функции равен самой функции, сложенной с произвольной постоянной, то есть

 

Таблица основных интегралов

 

1. где

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

 

Задача 7. Вычислить неопределенные интегралы: а) б)

в) г) д)

Решение.

 

а) Преобразуем подынтегральную функцию, применим свойства (1) и (2) неопределенного интеграла и фор­мулы (1) и (4).

 

б) Рассматриваемый интеграл (как и последующие) вы­числим методом замены переменной (методом подстановки), описываемый следующей формулой:

(*)

После вычисления неопределенного интеграла, стоящего в правой части формулы (*), в полученном выражении следует перейти от переменной t к переменной х.

 

 

в) Данный интеграл сводится к табличному (2), подстановкой l-x3 = t.

 

г)

 

 

д)

 

 

Задача 8. Вычислить неопределенные интегралы:

а) б) в)

 

Решение.

 

Данные интегралы вычисляются по формуле интегрирования по частям:

 

(**)

 

Представление подынтегрального выражения в виде мно­жителей u и dv сводит к интегралу, который должен быть «проще» исходного или табличным интегралом. При этом удобно пользоваться следующими рекомендациями.

 

 

1. Если подынтегральная функция содержит произведение многочлена на показательную или тригонометрическую функ­цию, то за множитель u следует принять многочлен.

 

2. Если подынтегральная функция содержит произведение многочлена на логарифмическую или обратную тригонометри­ческую функцию, то за множитель u следует принять логариф­мическую или обратную тригонометрическую функцию.

 

а) Исходя из рекомендации 1, получим

 

Замечание: интеграл найден методом подстановки t=2x.

 

б) Исходя из рекомендации 2, получим

 

 

в) Исходя из рекомендации 1, получим

 

 

Вопросы для самопроверки

 

1. Какая функция называется первообразной для данной функции?

2. Что называется неопределенным интегралом от данной функции?

3. Назовите свойства неопределенного интеграла.

4. Напишите табличные формулы неопределенных инте­гралов.

5. В чем сущность метода подстановки в неопределенном интеграле?

6. Напишите формулу интегрирования по частям для не­определенного интеграла.

 







Дата добавления: 2015-08-11; просмотров: 627. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия