Залежи с подошвенной водой
Теория конусообразования Маскета-Чарного допускает использование уравнений (13.4.4) и (13.4.5) при возмущенных первоначальных границах раздела ВНК и ГНК. Используя методику определения предельных безводных и безгазовых дебитов для вертикальной скважины, дренирующей нефтегазовую залежь с подошвенной водой и верхним газом (см. §11.3.4), и уравнения (13.4.4) и (13.4.5) можно получить строгое решение аналогичной задачи для горизонтального ствола. Возьмем производные по ординате ξ; потенциалы (13.4.4) и (13.4.5):
Линию, проходящую через точечный сток Чтобы определить предельные безводные и безгазовые дебиты, необходимо знать ординаты – обозначая сумму ряда в уравнении (13.4.4) через – строя графические изображения функции – приравнивая В соответствии с теорией конусообразования Маскета-Чарного потенциал вдоль устойчивой границы раздела двух жидкостей (профиль конуса) изменяется по линейному закону. Для нашего расчетного блока имеем [2,7]:
Решая совместно (13.4.4) и (13.4.8) при
Для определения ординаты Исследование рядов (13.4.1) и (13.4.2) на сходимость дано в работе [4,7] и иллюстрируется табл.13.3 (Δ; – есть отношение остаточного члена ряда к сумме предыдущих). Как видим, степень погрешности формул (13.4.1) и (13.4.2) зависит от параметра ρо и числа принятых членов m в бесконечных рядах. Так при
Таблица 13.3 Погрешность формул (13.4.1) и (13.4.2)
Сравнивая ряды в уравнениях (13.4.1) и (13.4.2) с аналогичными рядами в уравнениях потенциалов для вертикальных скважин [7,30], находим почти их полную аналогию. Отличие заключается в выражениях параметра размещения ρ;. Исходя из равных объемов дренирования для вертикальной скважины и горизонтального ствола πR
где L – длина горизонтального ствола. Для вертикальной скважины выражение для параметра
что дает право использовать полученные результаты для притока к вертикальной скважине применительно к горизонтальному стволу, в особенности, если принять последний как линию стоков. В этом случае в полученных нами уравнениях следует принять В соответствии с изложенным за расчетные предельные удельные дебиты принимаем λ;1 и λ;2 для точечного стока [7,8] дренирующего нефтегазовую залежь с круговым контуром питания, табл. 13.4. В этом случае оптимальное положение скважины стока, обеспечивающее одновременно безводный и безгазовый предельный дебит, определяется соотношением[7,8]
Расчетные значения функции (13.4.12) приведены в табл. 13.4 и представлены графиками, рис. 13.8.
Таблица 13.4
|