ПРИЛОЖЕНИЕ О. Люминесценция в молекулах и кристаллах
Поглощение энергии веществом и ее последующее испускание в виде видимого или ультрафиолетового излучения носит название люминесценции. Способностью люминесцировать обладает большая группа твердых, жидких и газообразных веществ. В зависимости от источника энергии, превращаемой в веществе в энергию испускаемого света, различают термолюминесценцию (термическое возбуждение), фотолюминесценцию (возбуждение светом), хемилюминесценцию (возбуждение под действием энергии, выделяющейся при химической реакции), радиолюминесценцию (возбуждение ионизирующим излучением), и т.д. При возникновении люминесценции под действием ионизирующего излучения можно выделить три основных стадии: поглощение энергии излучения и переход тела в неравновесное состояние; трансформация энергии, полученной телом; испускание света и переход тела в равновесное состояние. Последняя стадия может быть как самопроизвольной, так и стимулированной (путем нагревания, освещения, механического воздействия и т.п.). Люминесценция в газах, жидкостях и органических кристаллах – это молекулярный процесс, который можно упрощенно рассмотреть при помощи схемы энергетических уровней двухатомной молекулы (рис. О.1). Кривые на схеме изображают зависимость потенциальной энергии молекулы люминофора от межатомного расстояния: нижняя кривая относится к основному, а верхняя – к возбужденному электронному состоянию. В каждом состоянии имеется набор колебательно-вращательных уровней (изображены горизонтальными линиями).
Конкурирующими процессами по отношению к флуоресценции служат: а) безызлучательный переход из возбужденного электронного состояния в основное (особенно, когда обе кривые потенциальной энергии подходят близко одна к другой, т.е. вблизи уровня С на рис. О.1); б) диссоциация молекулы, когда уровень А ’ расположен выше последнего дискретного уровня D, отвечающего связанному состоянию. При безызлучательном переходе энергия возбуждения перходит в энергию теплового движения, т.е. происходит тушение флуоресценции. Чем выше температура, тем больше амплитуда колебаний решетки и тем больше вероятность тушения. В сложных многоатомных молекулах процессы поглощения энергии и испускания света происходят более сложным образом, но приведенные качественные рассуждения остаются справедливыми и для сложных молекул.
При прохождении ионизирующего излучения через кристалл электрон может перейти из валентной зоны в зону проводимости (путь АА ’) и перемещаться внутри кристалла до тех пор, пока не вернется в валентную зону или не будет захвачен дефектом. В последнем случае электрон переходит на энергетический уровень, связанный с дефектом (путь А ’ В’), а избыток энергии передается колебаниям кристаллической решетки. С этого нового уровня электрон путем флуоресценции может перейти в валентную зону (ВВ ’). Потерять свою энергию электрон может и без излучения, например, в результате полного перехода ее в энергию колебаний, однако такой процесс маловероятен, поскольку ширина запрещенной зоны (порядка 7 эВ) много больше энергии теплового движения. Прозрачность кристалла по отношению к флуоресценции обеспечивается тем, что энергия высвечиваемых фотонов меньше разности энергий электрона в валентной зоне и в зоне проводимости, а оптическое поглощение кристалла заключается, главным образом, в переходах между этими двумя зонами. Создание в кристаллах центров флуоресценции часто осуществляется искусственно, путем введения в них небольших количеств соответствующих примесей, носящих название активаторов. Обычно активаторами служат атомы металлов (Ag, Tl и др.). На основе нестимулированной радиолюминесценции разработаны сцинтилляционные методы регистрации ионизирующих излучений. В дозиметрии широко применяются термолюминесцентные дозиметры. Их действие основано на испускании света при нагревании облученного неорганического вещества, называемого термолюминофором. Механизм термолюминесценции можно объяснить, рассматривая существование в запрещенной зоне термолюминофора дискретных уровней двух типов, связанных с ловушками и активаторами. При поглощении энергии излучения активатором (например, Ag) и основным веществом люминофора появляются свободные электроны, захватываемые ловушками; атомы активатора при этом ионизируются. Этот процесс называется запасанием светосуммы (рис. О.3). Освобождение электронов из ловушек при нагревании приводит к их рекомбинации с ионами активатора. Энергия, выделяющаяся в результате рекомбинации, переводит активатор в возбужденное состояние, которое впоследствии испускает фотон (высвечивается).
Мерой поглощенной дозы ионизирующего излучения служит амплитуда максимума на кривой термовысвечивания (пиковый метод определения дозы) или общее количество высвеченной энергии (интегральный метод).
|