Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие о частных производных





 

Пусть дана функция нескольких переменных f = f (x, у, z, …). Если зафиксировать значение всех независимых переменных, кроме одной, то f станет функцией этой одной переменной и по ней можно брать производную по известным правилам. Такие производные называются частными. Другими словами,

– частная производная по переменной х от функции f,

– частная производная по переменной у от функции f,

– частная производная по переменной z от функции f и т. п.

Символы или (x, y, z, …) для функций нескольких переменных не имеют смысла, так как небходимо обязательно указывать, по какой именно переменной производится дифференцирование. Частная производная (например, по х) обозначается:

; ; (x, y, z, …),

однако первые два обозначения из них предпочтительнее.

Отметим, что правила вычисления частных производных от конкретных функций совпадают с правилами, применяемыми для функций одной переменной, только требуется каждый раз помнить, по какой переменной берется производная, а к остальным переменным относиться как к постоянным.


Примеры.

Дана функция нескольких переменных; требуется найти частные производные по всем переменным.

1. f (x, y) = x 2sin y.

= 2 x sin y (здесь y рассматривается как постоянная);

= x 2соs y (здесь х рассматривается как постоянная).

2. f = xy.

= yxy –1 (здесь y рассматривается как постоянная);

= xy ×ln x (здесь х рассматривается как постоянная).

3. f = x 2 + z 2 + xz3.

= 2 x + z 3 (здесь z и y рассматриваются как постоянные);

= (здесь х и z рассматриваются как постоянные);

= 2 z + 3 xz 2 (здесь х и y рассматриваются как постоянные).

 


Приложение 5







Дата добавления: 2015-08-12; просмотров: 397. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия