Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие о частных производных





 

Пусть дана функция нескольких переменных f = f (x, у, z, …). Если зафиксировать значение всех независимых переменных, кроме одной, то f станет функцией этой одной переменной и по ней можно брать производную по известным правилам. Такие производные называются частными. Другими словами,

– частная производная по переменной х от функции f,

– частная производная по переменной у от функции f,

– частная производная по переменной z от функции f и т. п.

Символы или (x, y, z, …) для функций нескольких переменных не имеют смысла, так как небходимо обязательно указывать, по какой именно переменной производится дифференцирование. Частная производная (например, по х) обозначается:

; ; (x, y, z, …),

однако первые два обозначения из них предпочтительнее.

Отметим, что правила вычисления частных производных от конкретных функций совпадают с правилами, применяемыми для функций одной переменной, только требуется каждый раз помнить, по какой переменной берется производная, а к остальным переменным относиться как к постоянным.


Примеры.

Дана функция нескольких переменных; требуется найти частные производные по всем переменным.

1. f (x, y) = x 2sin y.

= 2 x sin y (здесь y рассматривается как постоянная);

= x 2соs y (здесь х рассматривается как постоянная).

2. f = xy.

= yxy –1 (здесь y рассматривается как постоянная);

= xy ×ln x (здесь х рассматривается как постоянная).

3. f = x 2 + z 2 + xz3.

= 2 x + z 3 (здесь z и y рассматриваются как постоянные);

= (здесь х и z рассматриваются как постоянные);

= 2 z + 3 xz 2 (здесь х и y рассматриваются как постоянные).

 


Приложение 5







Дата добавления: 2015-08-12; просмотров: 397. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия