Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Многочлен Ньютона с конечными разностями





В рассмотренных выше методах не делалось никаких предположений о плотности распределения узлов интерполяции. Рассмотрим случай равноотстоящих узлов интерполяции, то есть xi - xi-1 = const = h, i=1,n. h - называется шагом.

Введем понятие конечных разностей. Пусть некоторая функция задана таблицей. Составим разности значений функции:

Эти разности называются разностями первого порядка. Можно составить разности второго порядка:

Аналогично составляются разности k-го порядка:

Выразим конечные разности непосредственно через значение функции:

Таким образом, для любого k можно записать:

Запишем эту формулу для значений разности в узле xi:

Используя конечные разности можно определить

Перейдем к построению интерполяционного многочлена Ньютона. Этот многочлен будем искать в виде:

График многочлена должен проходить через заданные узлы, то есть N(xi)=yi(i = 0,n). Используем эти условия для нахождения коэффициентов многочлена:

Найдем отсюда коэффициенты ai:

Таким образом для любого k-го коэффициента формула примет вид:

Подставляя эти формулы в выражение многочлена Ньютона получим его следующий вид:

Полученную формулу можно записать в упрощенном виде. Для этого введем переменную

В этом случае:

С учетом этих соотношений формулу многочлена Ньютона можно записать в виде:

Полученная формула называется первым интерполяционным многочленом Ньютона для интерполяции вперед.

Эту интерполяционную формулу обычно используют для вычисления значений функции в точках левой половины рассматриваемого отрезка. Для правой половины рассматриваемого отрезка разности лучше вычислять справа налево. В этом случае t=(x-xn)/h<0 и интерполяционный многочлен Ньютона можно получить в виде:

 







Дата добавления: 2015-08-12; просмотров: 1855. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия