Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интерполяционный многочлен Лагранжа. Теорема о единственности.





Перейдем к случаю глобальной интерполяции, то есть построению интерполяционного многочлена, единого для всего отрезка [x0, xn]. При этом график интерполяционного многочлена должен проходить через все заданные точки.

Запишем искомый многочлен в виде:

Из условий равенства значений этого многочлена в узлах xi соответствующим заданным табличным значениям yi, получим систему уравнений для нахождения коэффициентов a0, a1,...,an:

Решив эту систему, найдем коэффициенты интерполяционного многочлена. Заметим, что такой путь построения многочлена может потребовать больших вычислений, особенно при большом числе узлов.

Рассмотрим более простой алгоритм построения интерполяционных алгоритмов. Будем искать многочлен в виде линейной комбинации множеств степени n.

Потребуем, чтобы каждый многочлен таким условиям отвечает многочлен вида:

Подставив эти формулы в исходный многочлен получим:

Эта формула называется интерполяционным многочленом Лагранжа.

Докажем, что этот многочлен является единственным. Допустим противоположное: пусть существует еще один многочлен F(x) степени n, принимающий в узлах интерполяции значения табличной функции, то есть F(xi) = yi, i = 0,n. Но не совпадающий с L(x). Так как F(xi) = yi и L(xi) = yi, то разность R(x) = L(x) - F(x), являющаяся многочленом степени не более n в узлах xi =0

Если R(x)=L(x)-F(x) ≠ 0, то разность R(x) (будучи многочленом не выше n-й степени- это следует из вида многочлена L(x), в котором n+1 слагаемое, каждое по n множителей), в силу основной теоремы высшей алгебры имеет n корней. Это противоречит виду R(x).

[ Основная теорема алгебры: каждое алгебраическое уравнение n-й степени

коэффициенты, которого a1,a2,...,an - действительные или комплексные числа, имеет ровно n корней действительных или комплексных.]

Это противоречит равенствам:

число, которых равно n + 1 (система из (n+1)-го уравнения).

Возникло противоречие: многочлен, который не может иметь более n корней, имеет n+1 корень. Следовательно, многочлены L(x) и F(x) тождественны (L(x) F(x)).

Из формулы интерполяционного многочлена Лагранжа

 

 







Дата добавления: 2015-08-12; просмотров: 1763. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия