Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интерполяционный многочлен Лагранжа. Теорема о единственности.





Перейдем к случаю глобальной интерполяции, то есть построению интерполяционного многочлена, единого для всего отрезка [x0, xn]. При этом график интерполяционного многочлена должен проходить через все заданные точки.

Запишем искомый многочлен в виде:

Из условий равенства значений этого многочлена в узлах xi соответствующим заданным табличным значениям yi, получим систему уравнений для нахождения коэффициентов a0, a1,...,an:

Решив эту систему, найдем коэффициенты интерполяционного многочлена. Заметим, что такой путь построения многочлена может потребовать больших вычислений, особенно при большом числе узлов.

Рассмотрим более простой алгоритм построения интерполяционных алгоритмов. Будем искать многочлен в виде линейной комбинации множеств степени n.

Потребуем, чтобы каждый многочлен таким условиям отвечает многочлен вида:

Подставив эти формулы в исходный многочлен получим:

Эта формула называется интерполяционным многочленом Лагранжа.

Докажем, что этот многочлен является единственным. Допустим противоположное: пусть существует еще один многочлен F(x) степени n, принимающий в узлах интерполяции значения табличной функции, то есть F(xi) = yi, i = 0,n. Но не совпадающий с L(x). Так как F(xi) = yi и L(xi) = yi, то разность R(x) = L(x) - F(x), являющаяся многочленом степени не более n в узлах xi =0

Если R(x)=L(x)-F(x) ≠ 0, то разность R(x) (будучи многочленом не выше n-й степени- это следует из вида многочлена L(x), в котором n+1 слагаемое, каждое по n множителей), в силу основной теоремы высшей алгебры имеет n корней. Это противоречит виду R(x).

[ Основная теорема алгебры: каждое алгебраическое уравнение n-й степени

коэффициенты, которого a1,a2,...,an - действительные или комплексные числа, имеет ровно n корней действительных или комплексных.]

Это противоречит равенствам:

число, которых равно n + 1 (система из (n+1)-го уравнения).

Возникло противоречие: многочлен, который не может иметь более n корней, имеет n+1 корень. Следовательно, многочлены L(x) и F(x) тождественны (L(x) F(x)).

Из формулы интерполяционного многочлена Лагранжа

 

 







Дата добавления: 2015-08-12; просмотров: 1763. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия